Abstract
Morphology evolution and coarsening kinetics of γ’ (Ni3Al) precipitates in Ni–Al alloy were investigated quantitatively using the interface diffusion-controlled, the bulk diffusion-controlled, and the interface diffusion-controlled elastic strain models. By calculating the γ’ phase number density, volume fraction, and particle radius, the effects of diffusion and elastic strain on the γ’ phase growth and coarsening were clarified. The coarsening rate constants are smaller in the bulk diffusion-controlled and the interface diffusion-controlled elastic strain models than those of the interface diffusion-controlled model, which is due to the long-range diffusion of Al atoms and the retardant effect of coherent strain between the γ’ and γ phases, respectively. The linear fitting on the cubic exponent shows the comparable associate coefficient that gives no superiority to the different models in Ni–Al alloy.
Reference
[1] T.M. Pollock, A.S. Argon: Acta Metall. 42 (1994) 1859. DOI:10.1016/0956-7151(94)90011-610.1016/0956-7151(94)90011-6Suche in Google Scholar
[2] Y. Tsukada, T. Koyama, Y. Murata, N. Miura, Y. Kondo: Comput. Mater. Sci. 83 (2014) 371. 10.1016/j.commatsci.2013.11.028Suche in Google Scholar
[3] R.R. Mohanty, A. Leon, Y.H. Sohn: Comput. Mater. Sci. 43 (2008) 301. 10.1016/j.commatsci.2007.11.002Suche in Google Scholar
[4] C.B. Morrison, J. Weninger, C.K. Sudbrack, Z.G. Mao, R.D. Noebe, D.N. Seidman: Acta Mater. 56 (2008) 3422. DOI:10.1016/j.actamat.2008.03.01610.1016/j.actamat.2008.03.016Suche in Google Scholar
[5] J. Kundin, L. Mushongera, T. Goehler, H. Emmerich: Acta Mater. 60 (2012) 3758. DOI:10.1016/j.actamat.2012.03.02310.1016/j.actamat.2012.03.023Suche in Google Scholar
[6] C.K. Sudbrack, T.D. Ziebell, R.D. Noebe, D.N. Seidman: Acta Mater. 56 (2008) 448. DOI:10.1016/j.actamat.2007.09.04210.1016/j.actamat.2007.09.042Suche in Google Scholar
[7] Y. Ma, A.J. Ardell: Scr. Mater. 52 (2005) 1335. DOI:10.1016/j.scriptamat.2004.11.01410.1016/j.scriptamat.2004.11.014Suche in Google Scholar
[8] I.M. Lifshitz, V.V. Slyozov: J. Phys. Chem. Solids 19 (1961) 35. DOI:10.1016/0022-3697(61)90054-310.1016/0022-3697(61)90054-3Suche in Google Scholar
[9] C. Wagner: Z. Elektrochem. 65 (1961) 581.Suche in Google Scholar
[10] A.J. Ardell: Acta Metall. 20 (1 972) 61.10.1016/0001-6160(72)90114-9Suche in Google Scholar
[11] C.K.L. Davies, P. Nash, R.N. Stevens: Acta Metall. 28 (1980) 179. DOI:10.1016/0001-6160(80)90067-X10.1016/0001-6160(80)90067-XSuche in Google Scholar
[12] A.J. Ardell: Acta Mater. 58 (2010) 4325. DOI:10.1016/j.actamat.2010.04.01810.1016/j.actamat.2010.04.018Suche in Google Scholar
[13] A.C. Lund, P.W. Voorhees: Acta Mater. 50 (2002) 2085. DOI:10.1016/S1359-6454(02)00052-610.1016/S1359-6454(02)00052-6Suche in Google Scholar
[14] K. Kawasaki, Y. Enomoto: Physica A 150 (1988) 463. DOI:10.1016/0378-4371(88)90251-810.1016/0378-4371(88)90251-8Suche in Google Scholar
[15] K. Thornton, N. Akaiwa, P.W. Voorhees: Acta Mater. 52 (2004) 1365. DOI:10.1016/j.actamat.2003.11.03610.1016/j.actamat.2003.11.036Suche in Google Scholar
[16] T. Maebashi, M. Doi: Mater. Sci. Eng. A 373 (2004) 72. DOI:10.1016/j.msea.2003.12.06410.1016/j.msea.2003.12.064Suche in Google Scholar
[17] J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, L.Q. Chen: Acta Mater. 52 (2004) 2837. DOI:10.1016/j.actamat.2003.10.01710.1016/j.actamat.2003.10.017Suche in Google Scholar
[18] P. Shewmon: Diffusion in Solids, 2nd Ed., Minerals, Metals & Materials Society, Warrendale, PA, USA (1989).Suche in Google Scholar
[19] V. Vaithyanathan, L.Q. Chen: Acta Mater. 50 (2002) 4061. DOI:10.1016/S1359-6454(02)00204-510.1016/S1359-6454(02)00204-5Suche in Google Scholar
[20] D.M. Anderson, G.B. McFadden, A.A. Wheeler: Physica D 135 (2000) 175. DOI:10.1016/S0167-2789(99)00109-810.1016/S0167-2789(99)00109-8Suche in Google Scholar
[21] Y.U. Wang: Acta Mater. 54 (2006) 953. DOI:10.1016/j.actamat.2005.09.00610.1016/j.actamat.2005.09.006Suche in Google Scholar
[22] W. Jiang, W.Z. Bao, C.V. Thompson, D.J. Srolovitz: Acta Mater. 60 (2012) 5578. DOI:10.1016/j.actamat.2012.03.04210.1016/j.actamat.2012.03.042Suche in Google Scholar
[23] W.J. Boettinger, J.A. Warren, C. Becherman, A. Karma: Ann. Rev. Mater. Res. 23 (2002) 163. DOI:10.1146/annurev.matsci.32.101901.15580310.1146/annurev.matsci.32.101901.155803Suche in Google Scholar
[24] L.Q. Chen: Ann. Rev. Mater. Res. 32 (2002) 113. DOI:10.1146/annurev.matsci.32.112001.13204110.1146/annurev.matsci.32.112001.132041Suche in Google Scholar
[25] Y. Wang, D. Banerjee, C.C. Su: Acta Mater. 46 (1998) 2983. DOI:10.1016/S1359-6454(97)00237-110.1016/S1359-6454(97)00237-1Suche in Google Scholar
[26] J.W. Cahn, J.E. Hilliard: J. Chem. Phys. 28 (1958) 258. DOI:10.1063/1.174410210.1063/1.1744102Suche in Google Scholar
[27] J.Z. Zhu, Z.K. Liu, V. Vaithyanathan, L.Q. Chen: Scr. Mater. 46 (2002) 401. DOI:10.1016/S1359-6462(02)00013-110.1016/S1359-6462(02)00013-1Suche in Google Scholar
[28] I. Ansara, N. Dupin, H.L. Lukas: J. Alloys Comp. 247 (1997) 20. DOI:10.1016/S0925-8388(96)02652-710.1016/S0925-8388(96)02652-7Suche in Google Scholar
[29] A.T. Dinsdale: CALPHAD 15 (1991) 317. DOI:10.1016/0364-5916(91)90030-N10.1016/0364-5916(91)90030-NSuche in Google Scholar
[30] A.G. Khachaturyan: Theory of Structural Transformations in Solids, Wiley & Sons, New York (1983).Suche in Google Scholar
[31] S.Y. Hu, L.Q. Chen: Acta Mater. 49 (2001) 1879. DOI:10.1016/S1359-6454(00)00331-110.1016/S1359-6454(00)00331-1Suche in Google Scholar
[32] Y.S. Li, Y.Z. Yu, X.L. Cheng, G. Chen: Mater. Sci. Eng. A 528 (2011) 8628. DOI:10.1016/j.msea.2010.12.01410.1016/j.msea.2010.12.014Suche in Google Scholar
[33] Y.H. Wen, J.V. Lill, S.L. Chen, J.P. Simmons: Acta Mater. 58 (2010) 875. DOI:10.1016/j.actamat.2009.10.00210.1016/j.actamat.2009.10.002Suche in Google Scholar
[34] J.S. Langer, M. Bar-on, H.D. Miller: Phys. Rev. A 11 (1975) 1417. DOI:10.1103/PhysRevA.11.141710.1103/PhysRevA.11.1417Suche in Google Scholar
[35] K. Kitahara, M. Imada: Prog. Theor. Phys. Suppl. 64 (1978) 65. DOI:10.1143/PTPS.64.6510.1143/PTPS.64.65Suche in Google Scholar
[36] J.Z. Zhu, L.Q. Chen: Phys. Rev. E 60 (1999) 3564. DOI:10.1103/PhysRevE.60.356410.1103/PhysRevE.60.3564Suche in Google Scholar
[37] L.Q. Chen, J. Shen: Comput. Phys. Commun. 108 (1998) 147. DOI:10.1016/S0010-4655(97)00115-X10.1016/S0010-4655(97)00115-XSuche in Google Scholar
[38] H. Pottenbohm, G. Neitze, E. Nembach: Mater. Sci. Eng. 60 (1983) 189. DOI:10.1016/0025-5416(83)90001-010.1016/0025-5416(83)90001-0Suche in Google Scholar
[39] M. Doi: Prog. Mater. Sci. 40(1996) 79. DOI:10.1016/0079-6425(96)00001-110.1016/0079-6425(96)00001-1Suche in Google Scholar
[40] T. Miyazaki, H. Imamura, H. Mori, T. Kozakai: J. Mater. Sci. 16 (1981) 1197. DOI:10.1007/BF0103383210.1007/BF01033832Suche in Google Scholar
[41] G. Sheng, T. Wang, Q. Du, K.G. Wang, Z.K. Liu, L.Q. Chen: Commun. Comput. Phys. 8 (2010) 249. DOI:10.4208/cicp.160709.041109a10.4208/cicp.160709.041109aSuche in Google Scholar
[42] J. Tiley, G.B. Viswanathan, R. Srinavasan, R. Banerjee, D. Dimiduk, H.L. Fraser: Acta Mater. 57 (2009) 2538. DOI:10.1016/j.actamat.2009.02.01010.1016/j.actamat.2009.02.010Suche in Google Scholar
[43] R.J. White, S.B. Fisher: Mater. Sci. Eng. 33 (1978) 149. DOI:10.1016/0025-5416(78)90167-210.1016/0025-5416(78)90167-2Suche in Google Scholar
[44] R.J. White: Mater. Sci. Eng. 40 (1979) 15. DOI:10.1016/0025-5416(79)90004-110.1016/0025-5416(79)90004-1Suche in Google Scholar
[45] M. Tomellini: Comput. Mater. Sci. 50 (2011) 2371. 10.1016/j.commatsci.2011.03.015Suche in Google Scholar
[46] H. Chen, S.V.D. Zwaag: J. Mater. Sci. 46 (2011) 1328. DOI:10.1007/s10853-010-4798-410.1007/s10853-010-4798-4Suche in Google Scholar
[47] J. Roussi, P. Andre, M. Samama, G. Pignaud, M. Bonneau, A. Laporte, M. Doi: Prog. Mater. Sci. 40 (1996) 79. DOI:10.1016/0079-6425(96)00001-110.1016/0079-6425(96)00001-1Suche in Google Scholar
[48] P. Fratzl, O. Penrose, J.L. Lebowitz: J. Stat. Phys. 95 (1999) 1429. DOI:10.1023/A:100458742500610.1023/A:1004587425006Suche in Google Scholar
[49] K.E. Yoon, R.D. Noebe, D.N. Seidman: Acta Mater. 55 (2007) 1145. DOI:10.1016/j.actamat.2006.08.02410.1016/j.actamat.2006.08.024Suche in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences