Abstract
Morphology evolution and coarsening kinetics of γ’ (Ni3Al) precipitates in Ni–Al alloy were investigated quantitatively using the interface diffusion-controlled, the bulk diffusion-controlled, and the interface diffusion-controlled elastic strain models. By calculating the γ’ phase number density, volume fraction, and particle radius, the effects of diffusion and elastic strain on the γ’ phase growth and coarsening were clarified. The coarsening rate constants are smaller in the bulk diffusion-controlled and the interface diffusion-controlled elastic strain models than those of the interface diffusion-controlled model, which is due to the long-range diffusion of Al atoms and the retardant effect of coherent strain between the γ’ and γ phases, respectively. The linear fitting on the cubic exponent shows the comparable associate coefficient that gives no superiority to the different models in Ni–Al alloy.
Reference
[1] T.M. Pollock, A.S. Argon: Acta Metall. 42 (1994) 1859. DOI:10.1016/0956-7151(94)90011-610.1016/0956-7151(94)90011-6Search in Google Scholar
[2] Y. Tsukada, T. Koyama, Y. Murata, N. Miura, Y. Kondo: Comput. Mater. Sci. 83 (2014) 371. 10.1016/j.commatsci.2013.11.028Search in Google Scholar
[3] R.R. Mohanty, A. Leon, Y.H. Sohn: Comput. Mater. Sci. 43 (2008) 301. 10.1016/j.commatsci.2007.11.002Search in Google Scholar
[4] C.B. Morrison, J. Weninger, C.K. Sudbrack, Z.G. Mao, R.D. Noebe, D.N. Seidman: Acta Mater. 56 (2008) 3422. DOI:10.1016/j.actamat.2008.03.01610.1016/j.actamat.2008.03.016Search in Google Scholar
[5] J. Kundin, L. Mushongera, T. Goehler, H. Emmerich: Acta Mater. 60 (2012) 3758. DOI:10.1016/j.actamat.2012.03.02310.1016/j.actamat.2012.03.023Search in Google Scholar
[6] C.K. Sudbrack, T.D. Ziebell, R.D. Noebe, D.N. Seidman: Acta Mater. 56 (2008) 448. DOI:10.1016/j.actamat.2007.09.04210.1016/j.actamat.2007.09.042Search in Google Scholar
[7] Y. Ma, A.J. Ardell: Scr. Mater. 52 (2005) 1335. DOI:10.1016/j.scriptamat.2004.11.01410.1016/j.scriptamat.2004.11.014Search in Google Scholar
[8] I.M. Lifshitz, V.V. Slyozov: J. Phys. Chem. Solids 19 (1961) 35. DOI:10.1016/0022-3697(61)90054-310.1016/0022-3697(61)90054-3Search in Google Scholar
[9] C. Wagner: Z. Elektrochem. 65 (1961) 581.Search in Google Scholar
[10] A.J. Ardell: Acta Metall. 20 (1 972) 61.10.1016/0001-6160(72)90114-9Search in Google Scholar
[11] C.K.L. Davies, P. Nash, R.N. Stevens: Acta Metall. 28 (1980) 179. DOI:10.1016/0001-6160(80)90067-X10.1016/0001-6160(80)90067-XSearch in Google Scholar
[12] A.J. Ardell: Acta Mater. 58 (2010) 4325. DOI:10.1016/j.actamat.2010.04.01810.1016/j.actamat.2010.04.018Search in Google Scholar
[13] A.C. Lund, P.W. Voorhees: Acta Mater. 50 (2002) 2085. DOI:10.1016/S1359-6454(02)00052-610.1016/S1359-6454(02)00052-6Search in Google Scholar
[14] K. Kawasaki, Y. Enomoto: Physica A 150 (1988) 463. DOI:10.1016/0378-4371(88)90251-810.1016/0378-4371(88)90251-8Search in Google Scholar
[15] K. Thornton, N. Akaiwa, P.W. Voorhees: Acta Mater. 52 (2004) 1365. DOI:10.1016/j.actamat.2003.11.03610.1016/j.actamat.2003.11.036Search in Google Scholar
[16] T. Maebashi, M. Doi: Mater. Sci. Eng. A 373 (2004) 72. DOI:10.1016/j.msea.2003.12.06410.1016/j.msea.2003.12.064Search in Google Scholar
[17] J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, L.Q. Chen: Acta Mater. 52 (2004) 2837. DOI:10.1016/j.actamat.2003.10.01710.1016/j.actamat.2003.10.017Search in Google Scholar
[18] P. Shewmon: Diffusion in Solids, 2nd Ed., Minerals, Metals & Materials Society, Warrendale, PA, USA (1989).Search in Google Scholar
[19] V. Vaithyanathan, L.Q. Chen: Acta Mater. 50 (2002) 4061. DOI:10.1016/S1359-6454(02)00204-510.1016/S1359-6454(02)00204-5Search in Google Scholar
[20] D.M. Anderson, G.B. McFadden, A.A. Wheeler: Physica D 135 (2000) 175. DOI:10.1016/S0167-2789(99)00109-810.1016/S0167-2789(99)00109-8Search in Google Scholar
[21] Y.U. Wang: Acta Mater. 54 (2006) 953. DOI:10.1016/j.actamat.2005.09.00610.1016/j.actamat.2005.09.006Search in Google Scholar
[22] W. Jiang, W.Z. Bao, C.V. Thompson, D.J. Srolovitz: Acta Mater. 60 (2012) 5578. DOI:10.1016/j.actamat.2012.03.04210.1016/j.actamat.2012.03.042Search in Google Scholar
[23] W.J. Boettinger, J.A. Warren, C. Becherman, A. Karma: Ann. Rev. Mater. Res. 23 (2002) 163. DOI:10.1146/annurev.matsci.32.101901.15580310.1146/annurev.matsci.32.101901.155803Search in Google Scholar
[24] L.Q. Chen: Ann. Rev. Mater. Res. 32 (2002) 113. DOI:10.1146/annurev.matsci.32.112001.13204110.1146/annurev.matsci.32.112001.132041Search in Google Scholar
[25] Y. Wang, D. Banerjee, C.C. Su: Acta Mater. 46 (1998) 2983. DOI:10.1016/S1359-6454(97)00237-110.1016/S1359-6454(97)00237-1Search in Google Scholar
[26] J.W. Cahn, J.E. Hilliard: J. Chem. Phys. 28 (1958) 258. DOI:10.1063/1.174410210.1063/1.1744102Search in Google Scholar
[27] J.Z. Zhu, Z.K. Liu, V. Vaithyanathan, L.Q. Chen: Scr. Mater. 46 (2002) 401. DOI:10.1016/S1359-6462(02)00013-110.1016/S1359-6462(02)00013-1Search in Google Scholar
[28] I. Ansara, N. Dupin, H.L. Lukas: J. Alloys Comp. 247 (1997) 20. DOI:10.1016/S0925-8388(96)02652-710.1016/S0925-8388(96)02652-7Search in Google Scholar
[29] A.T. Dinsdale: CALPHAD 15 (1991) 317. DOI:10.1016/0364-5916(91)90030-N10.1016/0364-5916(91)90030-NSearch in Google Scholar
[30] A.G. Khachaturyan: Theory of Structural Transformations in Solids, Wiley & Sons, New York (1983).Search in Google Scholar
[31] S.Y. Hu, L.Q. Chen: Acta Mater. 49 (2001) 1879. DOI:10.1016/S1359-6454(00)00331-110.1016/S1359-6454(00)00331-1Search in Google Scholar
[32] Y.S. Li, Y.Z. Yu, X.L. Cheng, G. Chen: Mater. Sci. Eng. A 528 (2011) 8628. DOI:10.1016/j.msea.2010.12.01410.1016/j.msea.2010.12.014Search in Google Scholar
[33] Y.H. Wen, J.V. Lill, S.L. Chen, J.P. Simmons: Acta Mater. 58 (2010) 875. DOI:10.1016/j.actamat.2009.10.00210.1016/j.actamat.2009.10.002Search in Google Scholar
[34] J.S. Langer, M. Bar-on, H.D. Miller: Phys. Rev. A 11 (1975) 1417. DOI:10.1103/PhysRevA.11.141710.1103/PhysRevA.11.1417Search in Google Scholar
[35] K. Kitahara, M. Imada: Prog. Theor. Phys. Suppl. 64 (1978) 65. DOI:10.1143/PTPS.64.6510.1143/PTPS.64.65Search in Google Scholar
[36] J.Z. Zhu, L.Q. Chen: Phys. Rev. E 60 (1999) 3564. DOI:10.1103/PhysRevE.60.356410.1103/PhysRevE.60.3564Search in Google Scholar
[37] L.Q. Chen, J. Shen: Comput. Phys. Commun. 108 (1998) 147. DOI:10.1016/S0010-4655(97)00115-X10.1016/S0010-4655(97)00115-XSearch in Google Scholar
[38] H. Pottenbohm, G. Neitze, E. Nembach: Mater. Sci. Eng. 60 (1983) 189. DOI:10.1016/0025-5416(83)90001-010.1016/0025-5416(83)90001-0Search in Google Scholar
[39] M. Doi: Prog. Mater. Sci. 40(1996) 79. DOI:10.1016/0079-6425(96)00001-110.1016/0079-6425(96)00001-1Search in Google Scholar
[40] T. Miyazaki, H. Imamura, H. Mori, T. Kozakai: J. Mater. Sci. 16 (1981) 1197. DOI:10.1007/BF0103383210.1007/BF01033832Search in Google Scholar
[41] G. Sheng, T. Wang, Q. Du, K.G. Wang, Z.K. Liu, L.Q. Chen: Commun. Comput. Phys. 8 (2010) 249. DOI:10.4208/cicp.160709.041109a10.4208/cicp.160709.041109aSearch in Google Scholar
[42] J. Tiley, G.B. Viswanathan, R. Srinavasan, R. Banerjee, D. Dimiduk, H.L. Fraser: Acta Mater. 57 (2009) 2538. DOI:10.1016/j.actamat.2009.02.01010.1016/j.actamat.2009.02.010Search in Google Scholar
[43] R.J. White, S.B. Fisher: Mater. Sci. Eng. 33 (1978) 149. DOI:10.1016/0025-5416(78)90167-210.1016/0025-5416(78)90167-2Search in Google Scholar
[44] R.J. White: Mater. Sci. Eng. 40 (1979) 15. DOI:10.1016/0025-5416(79)90004-110.1016/0025-5416(79)90004-1Search in Google Scholar
[45] M. Tomellini: Comput. Mater. Sci. 50 (2011) 2371. 10.1016/j.commatsci.2011.03.015Search in Google Scholar
[46] H. Chen, S.V.D. Zwaag: J. Mater. Sci. 46 (2011) 1328. DOI:10.1007/s10853-010-4798-410.1007/s10853-010-4798-4Search in Google Scholar
[47] J. Roussi, P. Andre, M. Samama, G. Pignaud, M. Bonneau, A. Laporte, M. Doi: Prog. Mater. Sci. 40 (1996) 79. DOI:10.1016/0079-6425(96)00001-110.1016/0079-6425(96)00001-1Search in Google Scholar
[48] P. Fratzl, O. Penrose, J.L. Lebowitz: J. Stat. Phys. 95 (1999) 1429. DOI:10.1023/A:100458742500610.1023/A:1004587425006Search in Google Scholar
[49] K.E. Yoon, R.D. Noebe, D.N. Seidman: Acta Mater. 55 (2007) 1145. DOI:10.1016/j.actamat.2006.08.02410.1016/j.actamat.2006.08.024Search in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences