Home Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
Article
Licensed
Unlicensed Requires Authentication

Phase-field simulation of diffusion-controlled coarsening kinetics of γ phase in Ni–Al alloy

  • Yuxuan Pang , Yongsheng Li EMAIL logo , Xingchao Wu , Wei Liu and Zhiyuan Hou
Published/Copyright: October 27, 2021
Become an author with De Gruyter Brill

Abstract

Morphology evolution and coarsening kinetics of γ (Ni3Al) precipitates in Ni–Al alloy were investigated quantitatively using the interface diffusion-controlled, the bulk diffusion-controlled, and the interface diffusion-controlled elastic strain models. By calculating the γ phase number density, volume fraction, and particle radius, the effects of diffusion and elastic strain on the γ phase growth and coarsening were clarified. The coarsening rate constants are smaller in the bulk diffusion-controlled and the interface diffusion-controlled elastic strain models than those of the interface diffusion-controlled model, which is due to the long-range diffusion of Al atoms and the retardant effect of coherent strain between the γ and γ phases, respectively. The linear fitting on the cubic exponent shows the comparable associate coefficient that gives no superiority to the different models in Ni–Al alloy.


Professor Yong-Sheng Li School of Materials Science and Engineering Nanjing University of Science and Technology No. 200 Xiaolingwei Street Nanjing 210094 P. R. China Tel.: +86-25-84315159 Fax: +86-25-84315159

Reference

[1] T.M. Pollock, A.S. Argon: Acta Metall. 42 (1994) 1859. DOI:10.1016/0956-7151(94)90011-610.1016/0956-7151(94)90011-6Search in Google Scholar

[2] Y. Tsukada, T. Koyama, Y. Murata, N. Miura, Y. Kondo: Comput. Mater. Sci. 83 (2014) 371. 10.1016/j.commatsci.2013.11.028Search in Google Scholar

[3] R.R. Mohanty, A. Leon, Y.H. Sohn: Comput. Mater. Sci. 43 (2008) 301. 10.1016/j.commatsci.2007.11.002Search in Google Scholar

[4] C.B. Morrison, J. Weninger, C.K. Sudbrack, Z.G. Mao, R.D. Noebe, D.N. Seidman: Acta Mater. 56 (2008) 3422. DOI:10.1016/j.actamat.2008.03.01610.1016/j.actamat.2008.03.016Search in Google Scholar

[5] J. Kundin, L. Mushongera, T. Goehler, H. Emmerich: Acta Mater. 60 (2012) 3758. DOI:10.1016/j.actamat.2012.03.02310.1016/j.actamat.2012.03.023Search in Google Scholar

[6] C.K. Sudbrack, T.D. Ziebell, R.D. Noebe, D.N. Seidman: Acta Mater. 56 (2008) 448. DOI:10.1016/j.actamat.2007.09.04210.1016/j.actamat.2007.09.042Search in Google Scholar

[7] Y. Ma, A.J. Ardell: Scr. Mater. 52 (2005) 1335. DOI:10.1016/j.scriptamat.2004.11.01410.1016/j.scriptamat.2004.11.014Search in Google Scholar

[8] I.M. Lifshitz, V.V. Slyozov: J. Phys. Chem. Solids 19 (1961) 35. DOI:10.1016/0022-3697(61)90054-310.1016/0022-3697(61)90054-3Search in Google Scholar

[9] C. Wagner: Z. Elektrochem. 65 (1961) 581.Search in Google Scholar

[10] A.J. Ardell: Acta Metall. 20 (1 972) 61.10.1016/0001-6160(72)90114-9Search in Google Scholar

[11] C.K.L. Davies, P. Nash, R.N. Stevens: Acta Metall. 28 (1980) 179. DOI:10.1016/0001-6160(80)90067-X10.1016/0001-6160(80)90067-XSearch in Google Scholar

[12] A.J. Ardell: Acta Mater. 58 (2010) 4325. DOI:10.1016/j.actamat.2010.04.01810.1016/j.actamat.2010.04.018Search in Google Scholar

[13] A.C. Lund, P.W. Voorhees: Acta Mater. 50 (2002) 2085. DOI:10.1016/S1359-6454(02)00052-610.1016/S1359-6454(02)00052-6Search in Google Scholar

[14] K. Kawasaki, Y. Enomoto: Physica A 150 (1988) 463. DOI:10.1016/0378-4371(88)90251-810.1016/0378-4371(88)90251-8Search in Google Scholar

[15] K. Thornton, N. Akaiwa, P.W. Voorhees: Acta Mater. 52 (2004) 1365. DOI:10.1016/j.actamat.2003.11.03610.1016/j.actamat.2003.11.036Search in Google Scholar

[16] T. Maebashi, M. Doi: Mater. Sci. Eng. A 373 (2004) 72. DOI:10.1016/j.msea.2003.12.06410.1016/j.msea.2003.12.064Search in Google Scholar

[17] J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, L.Q. Chen: Acta Mater. 52 (2004) 2837. DOI:10.1016/j.actamat.2003.10.01710.1016/j.actamat.2003.10.017Search in Google Scholar

[18] P. Shewmon: Diffusion in Solids, 2nd Ed., Minerals, Metals & Materials Society, Warrendale, PA, USA (1989).Search in Google Scholar

[19] V. Vaithyanathan, L.Q. Chen: Acta Mater. 50 (2002) 4061. DOI:10.1016/S1359-6454(02)00204-510.1016/S1359-6454(02)00204-5Search in Google Scholar

[20] D.M. Anderson, G.B. McFadden, A.A. Wheeler: Physica D 135 (2000) 175. DOI:10.1016/S0167-2789(99)00109-810.1016/S0167-2789(99)00109-8Search in Google Scholar

[21] Y.U. Wang: Acta Mater. 54 (2006) 953. DOI:10.1016/j.actamat.2005.09.00610.1016/j.actamat.2005.09.006Search in Google Scholar

[22] W. Jiang, W.Z. Bao, C.V. Thompson, D.J. Srolovitz: Acta Mater. 60 (2012) 5578. DOI:10.1016/j.actamat.2012.03.04210.1016/j.actamat.2012.03.042Search in Google Scholar

[23] W.J. Boettinger, J.A. Warren, C. Becherman, A. Karma: Ann. Rev. Mater. Res. 23 (2002) 163. DOI:10.1146/annurev.matsci.32.101901.15580310.1146/annurev.matsci.32.101901.155803Search in Google Scholar

[24] L.Q. Chen: Ann. Rev. Mater. Res. 32 (2002) 113. DOI:10.1146/annurev.matsci.32.112001.13204110.1146/annurev.matsci.32.112001.132041Search in Google Scholar

[25] Y. Wang, D. Banerjee, C.C. Su: Acta Mater. 46 (1998) 2983. DOI:10.1016/S1359-6454(97)00237-110.1016/S1359-6454(97)00237-1Search in Google Scholar

[26] J.W. Cahn, J.E. Hilliard: J. Chem. Phys. 28 (1958) 258. DOI:10.1063/1.174410210.1063/1.1744102Search in Google Scholar

[27] J.Z. Zhu, Z.K. Liu, V. Vaithyanathan, L.Q. Chen: Scr. Mater. 46 (2002) 401. DOI:10.1016/S1359-6462(02)00013-110.1016/S1359-6462(02)00013-1Search in Google Scholar

[28] I. Ansara, N. Dupin, H.L. Lukas: J. Alloys Comp. 247 (1997) 20. DOI:10.1016/S0925-8388(96)02652-710.1016/S0925-8388(96)02652-7Search in Google Scholar

[29] A.T. Dinsdale: CALPHAD 15 (1991) 317. DOI:10.1016/0364-5916(91)90030-N10.1016/0364-5916(91)90030-NSearch in Google Scholar

[30] A.G. Khachaturyan: Theory of Structural Transformations in Solids, Wiley & Sons, New York (1983).Search in Google Scholar

[31] S.Y. Hu, L.Q. Chen: Acta Mater. 49 (2001) 1879. DOI:10.1016/S1359-6454(00)00331-110.1016/S1359-6454(00)00331-1Search in Google Scholar

[32] Y.S. Li, Y.Z. Yu, X.L. Cheng, G. Chen: Mater. Sci. Eng. A 528 (2011) 8628. DOI:10.1016/j.msea.2010.12.01410.1016/j.msea.2010.12.014Search in Google Scholar

[33] Y.H. Wen, J.V. Lill, S.L. Chen, J.P. Simmons: Acta Mater. 58 (2010) 875. DOI:10.1016/j.actamat.2009.10.00210.1016/j.actamat.2009.10.002Search in Google Scholar

[34] J.S. Langer, M. Bar-on, H.D. Miller: Phys. Rev. A 11 (1975) 1417. DOI:10.1103/PhysRevA.11.141710.1103/PhysRevA.11.1417Search in Google Scholar

[35] K. Kitahara, M. Imada: Prog. Theor. Phys. Suppl. 64 (1978) 65. DOI:10.1143/PTPS.64.6510.1143/PTPS.64.65Search in Google Scholar

[36] J.Z. Zhu, L.Q. Chen: Phys. Rev. E 60 (1999) 3564. DOI:10.1103/PhysRevE.60.356410.1103/PhysRevE.60.3564Search in Google Scholar

[37] L.Q. Chen, J. Shen: Comput. Phys. Commun. 108 (1998) 147. DOI:10.1016/S0010-4655(97)00115-X10.1016/S0010-4655(97)00115-XSearch in Google Scholar

[38] H. Pottenbohm, G. Neitze, E. Nembach: Mater. Sci. Eng. 60 (1983) 189. DOI:10.1016/0025-5416(83)90001-010.1016/0025-5416(83)90001-0Search in Google Scholar

[39] M. Doi: Prog. Mater. Sci. 40(1996) 79. DOI:10.1016/0079-6425(96)00001-110.1016/0079-6425(96)00001-1Search in Google Scholar

[40] T. Miyazaki, H. Imamura, H. Mori, T. Kozakai: J. Mater. Sci. 16 (1981) 1197. DOI:10.1007/BF0103383210.1007/BF01033832Search in Google Scholar

[41] G. Sheng, T. Wang, Q. Du, K.G. Wang, Z.K. Liu, L.Q. Chen: Commun. Comput. Phys. 8 (2010) 249. DOI:10.4208/cicp.160709.041109a10.4208/cicp.160709.041109aSearch in Google Scholar

[42] J. Tiley, G.B. Viswanathan, R. Srinavasan, R. Banerjee, D. Dimiduk, H.L. Fraser: Acta Mater. 57 (2009) 2538. DOI:10.1016/j.actamat.2009.02.01010.1016/j.actamat.2009.02.010Search in Google Scholar

[43] R.J. White, S.B. Fisher: Mater. Sci. Eng. 33 (1978) 149. DOI:10.1016/0025-5416(78)90167-210.1016/0025-5416(78)90167-2Search in Google Scholar

[44] R.J. White: Mater. Sci. Eng. 40 (1979) 15. DOI:10.1016/0025-5416(79)90004-110.1016/0025-5416(79)90004-1Search in Google Scholar

[45] M. Tomellini: Comput. Mater. Sci. 50 (2011) 2371. 10.1016/j.commatsci.2011.03.015Search in Google Scholar

[46] H. Chen, S.V.D. Zwaag: J. Mater. Sci. 46 (2011) 1328. DOI:10.1007/s10853-010-4798-410.1007/s10853-010-4798-4Search in Google Scholar

[47] J. Roussi, P. Andre, M. Samama, G. Pignaud, M. Bonneau, A. Laporte, M. Doi: Prog. Mater. Sci. 40 (1996) 79. DOI:10.1016/0079-6425(96)00001-110.1016/0079-6425(96)00001-1Search in Google Scholar

[48] P. Fratzl, O. Penrose, J.L. Lebowitz: J. Stat. Phys. 95 (1999) 1429. DOI:10.1023/A:100458742500610.1023/A:1004587425006Search in Google Scholar

[49] K.E. Yoon, R.D. Noebe, D.N. Seidman: Acta Mater. 55 (2007) 1145. DOI:10.1016/j.actamat.2006.08.02410.1016/j.actamat.2006.08.024Search in Google Scholar

Received: 2014-06-24
Accepted: 2014-09-24
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111160/html
Scroll to top button