Abstract
This paper presents experimental results on intermittent electromagnetic radiation during plastic deformation of Cu – Ni alloys under tension and compression modes of deformation. On the basis of the nature of electromagnetic radiation signals, oscillatory or exponential, results show that the compression increases the viscous coefficient of Cu – Ni alloys during plastic deformation. Increasing the percentage of solute atoms in Cu – Ni alloys makes electromagnetic radiation strength higher under tension. The electromagnetic radiation emission occurs at smaller strains under compression showing early onset of plastic deformation. This is attributed to the role of high core region tensile residual stresses in the rolled Cu – Ni alloy specimens in accordance with the Bauschinger effect. The distance between the apexes of the dead metal cones during compression plays a significant role in electromagnetic radiation parameters. The dissociation of edge dislocations into partials and increase in internal stresses with increase in solute percentage in Cu – Ni alloys under compression considerably influences the electromagnetic radiation frequency.
References
[1] F.R.N. Nabarro: Theory of Crystal Dislocations, 1st Ed. Clarendon Press, Oxford (1967).Suche in Google Scholar
[2] A. Misra: Nature 254 (1975) 133. DOI:10.1038/254133a010.1038/254133a0Suche in Google Scholar
[3] A. Misra: Appl. Phys. 16 (1978) 195. DOI:10.1007/BF0093038710.1007/BF00930387Suche in Google Scholar
[4] A.A. Tudik, N.P. Valuev: Sov. Tech. Phys. Lett. 6 (1980) 37.Suche in Google Scholar
[5] V. Jagasivamani, K.J. Iyer: Mater. Lett. 6 (1988) 418. DOI:10.1016/0167-577X(88)90043-210.1016/0167-577X(88)90043-2Suche in Google Scholar
[6] J.T. Dickinson, L.C. Jensen, S.K. Bhattacharya: J. Vac. Sci. Technol. 3 (1985) 1398. DOI:10.1116/1.57278810.1116/1.572788Suche in Google Scholar
[7] W. Brown, M. Schmidt, K. Calahan: The 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, MD (2005).Suche in Google Scholar
[8] M.I. Molotskii: Sov. Tech. Phys. Lett. 6 (1980) 22.Suche in Google Scholar
[9] A. Misra, S. Ghosh: Indian J. Pure Appl. Phys. 18 (1980) 851.Suche in Google Scholar
[10] A. Misra, A. Kumar: Int. J. Fract. 127 (2004) 387. DOI:10.1023/B:FRAC.0000037676.32062.cb10.1023/B:FRAC.0000037676.32062.cbSuche in Google Scholar
[11] V.S. Chauhan, A. Misra: J. Mater. Sci. 43 (2008) 5634. DOI:10.1007/s10853-008-2590-510.1007/s10853-008-2590-5Suche in Google Scholar
[12] R. Singh, S.P. Lal, A. Misra: Appl. Phys. A 117 (2014) 1203.10.1007/s00339-014-8509-xSuche in Google Scholar
[13] S.K. Mishra, V. Sharma, A. Misra: Int. J. Mater. Res. 105 (2014) 265. DOI:10.3139/146.11101410.3139/146.111014Suche in Google Scholar
[14] B. Srilakshmi, A. Misra: J. Mater. Sci. 40 (2005) 6079. DOI:10.1007/s10853-005-1293-410.1007/s10853-005-1293-4Suche in Google Scholar
[15] A.A. Vorob’ev: Defektoskopiya (USSR) 13 (1977) 128.Suche in Google Scholar
[16] V. Frid, A. Rabinovitch, D. Bahat: Phys. Lett. A 356 (2006) 160. DOI:10.1016/j.physleta.2006.03.02410.1016/j.physleta.2006.03.024Suche in Google Scholar
[17] K. Fukui, S. Okubo, T. Terashima: Rock Mech. Rock Eng. 38 (2005) 411. DOI:10.1007/s00603-005-0046-710.1007/s00603-005-0046-7Suche in Google Scholar
[18] A. Lavrov: Strain 41 (2005) 135. DOI:10.1111/j.1475-1305.2005.00233.x10.1111/j.1475-1305.2005.00233.xSuche in Google Scholar
[19] Ya.I. Burak, V.F. Kondrat, O.R. Hrytsyna: Mater. Sci. 43 (2007) 449. DOI:10.1007/s11003-007-0054-810.1007/s11003-007-0054-8Suche in Google Scholar
[20] M. Krumbholz, M. Bock, S. Burchardt, U. Kelka, A. Vollbrecht: Solid Earth 3 (2012) 401. DOI:10.5194/se-3-401-201210.5194/se-3-401-2012Suche in Google Scholar
[21] V. Hadjicontis, C. Mavromatou, D. Mastrogiannis, T.N. Antsygina, K.A. Chishko: J. Appl. Phys. 110 (2011) 024907. DOI:10.1063/1.360824710.1063/1.3608247Suche in Google Scholar
[22] A. Carpinteri, G. Lacidogna, A. Manuello, G. Niccolini, A. Schiavi, A. Agosto: Exp. Tech. 36 (2012) 53. DOI:10.1111/j.1747-1567.2011.00709.x10.1111/j.1747-1567.2011.00709.xSuche in Google Scholar
[23] G. Lacidogna, A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, A. Agosto: Strain 47 (2) (2011) 144. DOI:10.1111/j.1475-1305.2010.00750.x10.1111/j.1475-1305.2010.00750.xSuche in Google Scholar
[24] A. Carpinteri, F. Cardone, G.Lacidogna: Exp. Mech. 50 (2010) 1235. DOI:10.1007/s11340-009-9325-710.1007/s11340-009-9325-7Suche in Google Scholar
[25] A. Carpinteri, G. Lacidogna, O. Borla, A. Manuello, G. Niccolini: Sadhana 37 (2012) 59. DOI:10.1007/s12046-012-0066-410.1007/s12046-012-0066-4Suche in Google Scholar
[26] A. Widom, J. Swain, Y.N. Srivastava: J. Phys. G: Nucl. Part. Phys. 40 (2013) 15006. DOI:10.1088/0954-3899/40/1/01500610.1088/0954-3899/40/1/015006Suche in Google Scholar
[27] J. Bohlen, P. Dobronˇ, K. Hantzsche, D. Letzig, F. Chmelík, K.U. Kainer: Int. J. Mater. Res. 100 (2009) 790. DOI:10.3139/146.11011410.3139/146.110114Suche in Google Scholar
[28] P. Dobronˇ, F. Chmelík, J. Bohlen, K. Hantzsche, D. Letzig, K.U. Kainer: Int. J. Mater. Res. 100 (2009) 888. DOI:10.3139/146.11011510.3139/146.110115Suche in Google Scholar
[29] H. Biermann, A. Vinogradov, O. Hartmann: Z. Metallkd. 93 (2002) 719. DOI:10.3139/146.02071910.3139/146.020719Suche in Google Scholar
[30] A. Misra, R.C. Prasad, V.S. Chauhan, B. Srilakshmi: Int. J. Fract. 145 (2007) 99. DOI:10.1007/s10704-007-9107-010.1007/s10704-007-9107-0Suche in Google Scholar
[31] A. Misra, R.C. Prasad, V.S. Chauhan, R. Kumar: Mech. Mater. 42 (2010) 505. DOI:10.1016/j.mechmat.2010.01.00510.1016/j.mechmat.2010.01.005Suche in Google Scholar
[32] V.S. Chauhan, A. Misra: Int. J. Mater. Res. 101 (2010) 857. DOI:10.3139/146.11035510.3139/146.110355Suche in Google Scholar
[33] R.A.C. Slater: Engineering Plasticity, McMillan Press Ltd, London, (1977).10.1007/978-1-349-02160-4Suche in Google Scholar
[34] J.P. Holman: Experimental Methods for Engineers, 4th Ed., McGraw Hill, New York (1984).Suche in Google Scholar
[35] S. Haykin, V.B. Van: Signal and Systems, John Wiley, Singapore (2002).Suche in Google Scholar
[36] L. Kubin, B. Devincre, T. Hoc: Int. J. Mater. Res. 100 (2009) 1411. DOI:10.3139/146.11019110.3139/146.110191Suche in Google Scholar
[37] R.W.K. Honeycombe: The Plastic Deformation of Metals, Edward Arnold (Publishers) Ltd., London (1985).Suche in Google Scholar
[38] A.H. Cottrell: Proc. R. Soc. London A276 (1963) 1. DOI:10.1098/rspa.1963.018810.1098/rspa.1963.0188Suche in Google Scholar
[39] U. Messerschmidt: Dislocation Dynamics During Plastic Deformation, Springer-Verlag, Berlin Heidelberg (2010). DOI:10.1007/978-3-642-03177-910.1007/978-3-642-03177-9Suche in Google Scholar
[40] R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th Ed., John Wiley & Sons Inc., Hoboken, NJ, USA (1996).Suche in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences