Startseite Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys

  • Ranjana Singh EMAIL logo , Shree P. Lal und Ashok Misra
Veröffentlicht/Copyright: 27. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents experimental results on intermittent electromagnetic radiation during plastic deformation of Cu – Ni alloys under tension and compression modes of deformation. On the basis of the nature of electromagnetic radiation signals, oscillatory or exponential, results show that the compression increases the viscous coefficient of Cu – Ni alloys during plastic deformation. Increasing the percentage of solute atoms in Cu – Ni alloys makes electromagnetic radiation strength higher under tension. The electromagnetic radiation emission occurs at smaller strains under compression showing early onset of plastic deformation. This is attributed to the role of high core region tensile residual stresses in the rolled Cu – Ni alloy specimens in accordance with the Bauschinger effect. The distance between the apexes of the dead metal cones during compression plays a significant role in electromagnetic radiation parameters. The dissociation of edge dislocations into partials and increase in internal stresses with increase in solute percentage in Cu – Ni alloys under compression considerably influences the electromagnetic radiation frequency.


Ranjana Singh Mechanical Engineering Department Birla Institute of Technology Patna 800014 India Tel.: +91 8886911775

References

[1] F.R.N. Nabarro: Theory of Crystal Dislocations, 1st Ed. Clarendon Press, Oxford (1967).Suche in Google Scholar

[2] A. Misra: Nature 254 (1975) 133. DOI:10.1038/254133a010.1038/254133a0Suche in Google Scholar

[3] A. Misra: Appl. Phys. 16 (1978) 195. DOI:10.1007/BF0093038710.1007/BF00930387Suche in Google Scholar

[4] A.A. Tudik, N.P. Valuev: Sov. Tech. Phys. Lett. 6 (1980) 37.Suche in Google Scholar

[5] V. Jagasivamani, K.J. Iyer: Mater. Lett. 6 (1988) 418. DOI:10.1016/0167-577X(88)90043-210.1016/0167-577X(88)90043-2Suche in Google Scholar

[6] J.T. Dickinson, L.C. Jensen, S.K. Bhattacharya: J. Vac. Sci. Technol. 3 (1985) 1398. DOI:10.1116/1.57278810.1116/1.572788Suche in Google Scholar

[7] W. Brown, M. Schmidt, K. Calahan: The 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, MD (2005).Suche in Google Scholar

[8] M.I. Molotskii: Sov. Tech. Phys. Lett. 6 (1980) 22.Suche in Google Scholar

[9] A. Misra, S. Ghosh: Indian J. Pure Appl. Phys. 18 (1980) 851.Suche in Google Scholar

[10] A. Misra, A. Kumar: Int. J. Fract. 127 (2004) 387. DOI:10.1023/B:FRAC.0000037676.32062.cb10.1023/B:FRAC.0000037676.32062.cbSuche in Google Scholar

[11] V.S. Chauhan, A. Misra: J. Mater. Sci. 43 (2008) 5634. DOI:10.1007/s10853-008-2590-510.1007/s10853-008-2590-5Suche in Google Scholar

[12] R. Singh, S.P. Lal, A. Misra: Appl. Phys. A 117 (2014) 1203.10.1007/s00339-014-8509-xSuche in Google Scholar

[13] S.K. Mishra, V. Sharma, A. Misra: Int. J. Mater. Res. 105 (2014) 265. DOI:10.3139/146.11101410.3139/146.111014Suche in Google Scholar

[14] B. Srilakshmi, A. Misra: J. Mater. Sci. 40 (2005) 6079. DOI:10.1007/s10853-005-1293-410.1007/s10853-005-1293-4Suche in Google Scholar

[15] A.A. Vorob’ev: Defektoskopiya (USSR) 13 (1977) 128.Suche in Google Scholar

[16] V. Frid, A. Rabinovitch, D. Bahat: Phys. Lett. A 356 (2006) 160. DOI:10.1016/j.physleta.2006.03.02410.1016/j.physleta.2006.03.024Suche in Google Scholar

[17] K. Fukui, S. Okubo, T. Terashima: Rock Mech. Rock Eng. 38 (2005) 411. DOI:10.1007/s00603-005-0046-710.1007/s00603-005-0046-7Suche in Google Scholar

[18] A. Lavrov: Strain 41 (2005) 135. DOI:10.1111/j.1475-1305.2005.00233.x10.1111/j.1475-1305.2005.00233.xSuche in Google Scholar

[19] Ya.I. Burak, V.F. Kondrat, O.R. Hrytsyna: Mater. Sci. 43 (2007) 449. DOI:10.1007/s11003-007-0054-810.1007/s11003-007-0054-8Suche in Google Scholar

[20] M. Krumbholz, M. Bock, S. Burchardt, U. Kelka, A. Vollbrecht: Solid Earth 3 (2012) 401. DOI:10.5194/se-3-401-201210.5194/se-3-401-2012Suche in Google Scholar

[21] V. Hadjicontis, C. Mavromatou, D. Mastrogiannis, T.N. Antsygina, K.A. Chishko: J. Appl. Phys. 110 (2011) 024907. DOI:10.1063/1.360824710.1063/1.3608247Suche in Google Scholar

[22] A. Carpinteri, G. Lacidogna, A. Manuello, G. Niccolini, A. Schiavi, A. Agosto: Exp. Tech. 36 (2012) 53. DOI:10.1111/j.1747-1567.2011.00709.x10.1111/j.1747-1567.2011.00709.xSuche in Google Scholar

[23] G. Lacidogna, A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, A. Agosto: Strain 47 (2) (2011) 144. DOI:10.1111/j.1475-1305.2010.00750.x10.1111/j.1475-1305.2010.00750.xSuche in Google Scholar

[24] A. Carpinteri, F. Cardone, G.Lacidogna: Exp. Mech. 50 (2010) 1235. DOI:10.1007/s11340-009-9325-710.1007/s11340-009-9325-7Suche in Google Scholar

[25] A. Carpinteri, G. Lacidogna, O. Borla, A. Manuello, G. Niccolini: Sadhana 37 (2012) 59. DOI:10.1007/s12046-012-0066-410.1007/s12046-012-0066-4Suche in Google Scholar

[26] A. Widom, J. Swain, Y.N. Srivastava: J. Phys. G: Nucl. Part. Phys. 40 (2013) 15006. DOI:10.1088/0954-3899/40/1/01500610.1088/0954-3899/40/1/015006Suche in Google Scholar

[27] J. Bohlen, P. Dobronˇ, K. Hantzsche, D. Letzig, F. Chmelík, K.U. Kainer: Int. J. Mater. Res. 100 (2009) 790. DOI:10.3139/146.11011410.3139/146.110114Suche in Google Scholar

[28] P. Dobronˇ, F. Chmelík, J. Bohlen, K. Hantzsche, D. Letzig, K.U. Kainer: Int. J. Mater. Res. 100 (2009) 888. DOI:10.3139/146.11011510.3139/146.110115Suche in Google Scholar

[29] H. Biermann, A. Vinogradov, O. Hartmann: Z. Metallkd. 93 (2002) 719. DOI:10.3139/146.02071910.3139/146.020719Suche in Google Scholar

[30] A. Misra, R.C. Prasad, V.S. Chauhan, B. Srilakshmi: Int. J. Fract. 145 (2007) 99. DOI:10.1007/s10704-007-9107-010.1007/s10704-007-9107-0Suche in Google Scholar

[31] A. Misra, R.C. Prasad, V.S. Chauhan, R. Kumar: Mech. Mater. 42 (2010) 505. DOI:10.1016/j.mechmat.2010.01.00510.1016/j.mechmat.2010.01.005Suche in Google Scholar

[32] V.S. Chauhan, A. Misra: Int. J. Mater. Res. 101 (2010) 857. DOI:10.3139/146.11035510.3139/146.110355Suche in Google Scholar

[33] R.A.C. Slater: Engineering Plasticity, McMillan Press Ltd, London, (1977).10.1007/978-1-349-02160-4Suche in Google Scholar

[34] J.P. Holman: Experimental Methods for Engineers, 4th Ed., McGraw Hill, New York (1984).Suche in Google Scholar

[35] S. Haykin, V.B. Van: Signal and Systems, John Wiley, Singapore (2002).Suche in Google Scholar

[36] L. Kubin, B. Devincre, T. Hoc: Int. J. Mater. Res. 100 (2009) 1411. DOI:10.3139/146.11019110.3139/146.110191Suche in Google Scholar

[37] R.W.K. Honeycombe: The Plastic Deformation of Metals, Edward Arnold (Publishers) Ltd., London (1985).Suche in Google Scholar

[38] A.H. Cottrell: Proc. R. Soc. London A276 (1963) 1. DOI:10.1098/rspa.1963.018810.1098/rspa.1963.0188Suche in Google Scholar

[39] U. Messerschmidt: Dislocation Dynamics During Plastic Deformation, Springer-Verlag, Berlin Heidelberg (2010). DOI:10.1007/978-3-642-03177-910.1007/978-3-642-03177-9Suche in Google Scholar

[40] R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th Ed., John Wiley & Sons Inc., Hoboken, NJ, USA (1996).Suche in Google Scholar

Received: 2014-05-07
Accepted: 2014-10-17
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111167/pdf?lang=de
Button zum nach oben scrollen