Abstract
Spinel type pure and Sr2+ doped zinc ferrite nanoparticles were prepared by glycine assisted combustion. The resultant nanoparticles were found to be highly crystalline with cubic crystal structure. The structure and the corresponding changes in the tetrahedral and octahedral bond stretching were investigated. The chemical elements and oxidation states of these nanoparticles were determined and the elemental compositions of synthesized nanoparticles established. It was observed that the optical band gap values increased from 2.43 eV to 2.49 eV as Sr2+ concentration increased. The morphology, chemical elements and composition of the prepared ferrites were examined. The magnetic behavior of these nanoferrites was studied and corresponding changes in the saturation magnetization, coercivity and remanent magnetization were analyzed.
References
[1] A.L. Xia, S. Liu, C. Jin, D. Du, J. Hu: Int. J. Mater. Res. 103 (2012) 490. DOI:10.3139/146.11065710.3139/146.110657Suche in Google Scholar
[2] N.M. Deraz, S.A. Shaban, A. Alarifi: J. Saudi Chem. Soc. 14 (2010) 357. DOI:10.1016/j.jscs.2010.04.01210.1016/j.jscs.2010.04.012Suche in Google Scholar
[3] Z.H. Zhou, J.M. Xue, J. Wang, H.S.O. Chan, T. Yu, Z.X. Shen: J. Appl. Phys. 91 (2002) 6015. DOI:10.1063/1.144752310.1063/1.1447523Suche in Google Scholar
[4] G. Zhang, L. Chunsheng, C. Fangyi: Sens. Actuators, B 120 (2007) 403. DOI:10.1016/j.snb.2006.02.03410.1016/j.snb.2006.02.034Suche in Google Scholar
[5] G. Lu, S. Li: Int. J. Hydrogen Energy 17 (1992) 767. DOI:10.1016/0360-3199(92)90019-S10.1016/0360-3199(92)90019-SSuche in Google Scholar
[6] S. Zhuiykov, M. Muta, T. Ono, M. Hasei: Electrochem. Solid-State Lett. 4 (2001) 19. DOI:10.1149/1.134653610.1149/1.1346536Suche in Google Scholar
[7] J.S. Jang, W. Li, S.H. Oh, J.S. Lee: Chem. Phys. Lett. 425 (2006) 278. DOI:10.1016/j.cplett.2006.05.03110.1016/j.cplett.2006.05.031Suche in Google Scholar
[8] L. Yu, X. Yang, L. Wang, H. Yang: Mater. Manuf. Processes 26 (2011) 1383. DOI:10.1080/10426914.2010.54480810.1080/10426914.2010.544808Suche in Google Scholar
[9] J. Liu, L. Wang, S. Zhong, Y. Han: Mater. Manuf. Processes 28 (2013) 10. DOI:10.1080/10426914.2012.70016210.1080/10426914.2012.700162Suche in Google Scholar
[10] S.K. Pandian, K. Karthik, K.S. Kumar, N.V. Jaya: Mater. Manuf. Processes 27 (2012) 130. DOI:10.1080/10426914.2011.55713010.1080/10426914.2011.557130Suche in Google Scholar
[11] R. Ping, Z. Junxi, D. Huiyong: J. of Wuhan University of Technology-Mater. Sci. Ed. 24 (2009) 927. DOI:10.1007/s11595-009-6927-y10.1007/s11595-009-6927-ySuche in Google Scholar
[12] J. Chandradass, M. Balasubramanian: Mater. Manuf. Processes 21 (2006) 319. DOI:10.1080/1042691050046481810.1080/10426910500464818Suche in Google Scholar
[13] X. Liu, WL. Gao: Mater. Manuf. Processes 27 (2012) 905. DOI:10.1080/10426914.2011.59325010.1080/10426914.2011.593250Suche in Google Scholar
[14] S. Ozcan, B. Kaynar, M.M. Can, T. Fırat: Mater. Sci. Eng. B 121 (2005) 278. DOI:10.1016/j.mseb.2005.04.00610.1016/j.mseb.2005.04.006Suche in Google Scholar
[15] R.S. Turtelli, M. Atif, J. Krippel, R. Grossinger, F. Kubel, W. Linert: Int. J. Mater. Res. 103 (2012) 1163. DOI:10.3139/146.11079110.3139/146.110791Suche in Google Scholar
[16] P. Hu, D. Pan, X. Wang, J. Tian, J. Wang, S. Zhang, A. Volinsky: J. Magn. Magn. Mater. 323 (2011) 569. DOI:10.1016/j.jmmm.2010.08.04010.1016/j.jmmm.2010.08.040Suche in Google Scholar
[17] E.J. Mittemeijer, U. Welzel: Z. Kristallogr. 223 (2008) 552. DOI:10.1524/zkri.2008.121310.1524/zkri.2008.1213Suche in Google Scholar
[18] N.K. Prasad, A. Naulakha, N. Jha, S.S. Meena, D. Bahadur, O. Prakash, R.K. Mandal: Int. J. Mater. Res. 104 (2013) 680. DOI:10.3139/146.11090910.3139/146.110909Suche in Google Scholar
[19] Q. Xing, Z. Peng, C.B. Wanga, Z. Fu, X. Fu: Physica B 407 (2012) 388. DOI:10.1016/j.physb.2011.11.00310.1016/j.physb.2011.11.003Suche in Google Scholar
[20] M. Ishaque, M.U. Islam, M. Azhar Khan, I.Z. Rahman, A. Genson, S. Hampshire: Physica B 405 (2010) 1532. DOI:10.1016/j.physb.2009.12.03510.1016/j.physb.2009.12.035Suche in Google Scholar
[21] T. Tsutaoka: J. Appl. Phys. 93 (2003) 2789. DOI:10.1063/1.154265110.1063/1.1542651Suche in Google Scholar
[22] K. Mohit, S.K. Rout, S. Parida, G.P. Singh, S.K. Sharma, S.K. Pradhan, I.W. Kim: Physica B 407 (2012) 935. DOI:10.1016/j.physb.2011.12.00310.1016/j.physb.2011.12.003Suche in Google Scholar
[23] M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman: J. Magn. Magn. Mater. 302 (2006) 190. DOI:10.1016/j.jmmm.2005.08.02910.1016/j.jmmm.2005.08.029Suche in Google Scholar
[24] S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, K.M. Jadhav: J. Appl. Phys. 106 (2009) 023914. DOI:10.1063/1.317650410.1063/1.3176504Suche in Google Scholar
[25] M.A. Gabal: J. Magn. Magn. Mater. 321 (2009) 3144. DOI:10.1016/j.jmmm.2009.05.04710.1016/j.jmmm.2009.05.047Suche in Google Scholar
[26] B.K. Labde, M.C. Sable, N.R. Shamkwar: Mater. Lett. 57 (2003) 1651. DOI:10.1016/S0167-577X(02)01046-710.1016/S0167-577X(02)01046-7Suche in Google Scholar
[27] C. Prakash, J.S. Baijal: Solid State Commun. 50 (1984) 557. DOI:10.1016/0038-1098(84)90329-610.1016/0038-1098(84)90329-6Suche in Google Scholar
[28] P. Priyadharsini, A. Pradeep, P. Sambasiva Rao, G. Chandrasekaran: Mater. Chem. Phys. 116 (2009) 207. DOI:10.1016/j.matchemphys.2009.03.01110.1016/j.matchemphys.2009.03.011Suche in Google Scholar
[29] P. Feng, G. Ying, C.F. Feng, F. Tao, Y.S. De: Chin. Phys. B 20 (2011) 127501. DOI:10.1088/1674-1056/20/1/01010110.1088/1674-1056/20/1/010101Suche in Google Scholar
[30] L. Liu, G. Zhang, L. Wang, T. Huang, L. Qin: Ind. Eng. Chem. Res. 50 (2011) 7219. DOI:10.1021/ie100884410.1021/ie1008844Suche in Google Scholar
[31] A. Miyakoshi, A. Ueno, M. Ichikawa: Appl. Catal., A 219 (2001) 249. DOI:10.1016/S0926-860X(01)00697-410.1016/S0926-860X(01)00697-4Suche in Google Scholar
[32] F. Tihay, G. Pourroy, M. Richard-Plouet, A.C. Roger, A. Kiennemann: Appl. Catal., A 206 (2001) 29. DOI:10.1016/S0926-860X(00)00595-010.1016/S0926-860X(00)00595-0Suche in Google Scholar
[33] V.V. Atuchin, J.C. Grivel, Z. Zhang: Chem. Phys. 360 (2009) 74. DOI:10.1016/j.chemphys.2009.04.01010.1016/j.chemphys.2009.04.010Suche in Google Scholar
[34] M.I. Sosulnikov, Y.A. Teterin: J. Electron Spectrosc. Relat. Phenom. 59 (1992) 111. DOI:10.1016/0368-2048(92)85002-O10.1016/0368-2048(92)85002-OSuche in Google Scholar
[35] M.P. de Jong, V.A. Dediu, C. Taliani, W.R. Salaneck: J. Appl. Phys. 94 (2003) 7292. DOI:10.1063/1.162508110.1063/1.1625081Suche in Google Scholar
[36] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Minnesota (1992).Suche in Google Scholar
[37] K. Morito, T. Suzuki, H. Kishi, I. Sakaguchi, N. Ohashi, H. Haneda: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54 (2007) 2567. DOI:10.1109/TUFFC.2007.57810.1109/TUFFC.2007.578Suche in Google Scholar
[38] J.D. Baniecki, M. Ishii, T. Shioga, K. Kurihara, S. Miyahara: Appl. Phys. Lett. 89 (2006) 162908. DOI:10.1063/1.235788010.1063/1.2357880Suche in Google Scholar
[39] M.W. Roberts, P.R. Wood: J. Electron Spectrosc. Relat. Phenom. 11 (1977) 431. DOI:10.1016/0368-2048(77)80018-210.1016/0368-2048(77)80018-2Suche in Google Scholar
[40] K. Villa, A. Black, X. Domenech, J. Peral: Sol. Energy 86 (2012) 558. DOI:10.1016/j.solener.2011.10.02910.1016/j.solener.2011.10.029Suche in Google Scholar
[41] R. Tholkappiyan, K. Vishista: Physica B 448 (2014) 177. DOI:10.1016/j.physb.2014.04.02210.1016/j.physb.2014.04.022Suche in Google Scholar
[42] D. Gao, Z. Shi, Y. Xu, J. Zhang, G. Yang, J. Zhang, X. Wang, D. Xue: Nanoscale Res. Lett. 5 (2010) 1289. DOI:10.1007/s11671-009-9433-410.1007/s11671-009-9433-4Suche in Google Scholar PubMed PubMed Central
[43] G.P. Joshi, N.S. Saxena, R. Mangal, A. Mishra: Bull. Mater. Sci. 26 (2003) 387. DOI:10.1007/BF0271118110.1007/BF02711181Suche in Google Scholar
[44] N. Kumar, G. Khurana, A. Gaur, R.K. Kotnala: Mater. Chem. Phys. 134 (2012) 783. DOI:10.1016/j.matchemphys.2012.03.01310.1016/j.matchemphys.2012.03.013Suche in Google Scholar
[45] Y. Koseoglu, A. Baykal, M.S. Toprak, F. Gozuak: J. Alloys Compd. 25 (2008) 209. DOI:10.1016/j.jallcom.2007.07.12110.1016/j.jallcom.2007.07.121Suche in Google Scholar
[46] S. Chikazumi: Physics of Magnetism, Wiley, New York (1959).Suche in Google Scholar
[47] A. Yan, X. Liu, R. Yi: J. Phys. Chem. C 112 (2008) 8558. DOI:10.1021/jp711039s10.1021/jp711039sSuche in Google Scholar
[48] B. Aslibeiki, P. Kameli, H. Salamati, M. Eshraghi, T. Tahmasebi: J. Magn. Magn. Mater. 322 (2010) 2929. DOI:10.1016/j.jmmm.2010.05.00710.1016/j.jmmm.2010.05.007Suche in Google Scholar
[49] M.K. Roy, B. Haldar, H.C. Verma: Nanotechnol. 17 (2006) 232. DOI:10.1088/0957-4484/17/1/03910.1088/0957-4484/17/1/039Suche in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences