Abstract
Freestanding films of highly pure iron and gold multilayers were fabricated and characterized for their intended use as biodegradable implant materials. These samples were deposited using magnetron sputtering on unheated substrates. This technology allows the combination of various non-compounding materials. After annealing for 2 h at 685 °C and 850 °C, respectively to homogenize the multilayer, the microstructures were investigated using X-ray diffraction, energy dispersive X-ray spectroscopy and scanning transmission electron microscopy. Due to the annealing, the multilayered microstructure converts into a new multiphase system consisting of an iron matrix and two different kinds of gold morphologies: segregations along grain boundaries and nanosized core–shell like precipitates.
The authors want to thank the DFG for the financial support.
References
[1] R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Böse, J. Koolen, T.F. Lüscher, N. Weissman, R. Waksman: Lancet 369 (2007) 1869–1875. DOI:10.1016/S0140-6736(07)60853-810.1016/S0140-6736(07)60853-8Suche in Google Scholar
[2] M. Moravej, D. Mantovani: Int. J. Mol. Sci. 12 (2011) 4250–4270. DOI:10.3390/ijms1207425010.3390/ijms12074250Suche in Google Scholar PubMed PubMed Central
[3] G. Mani, M.D. Feldman, D. Patel, C. Mauli Agrawal: Biomaterials 28 (2007) 1689–1710. DOI:10.1016/j.biomaterials.2006.11.04210.1016/j.biomaterials.2006.11.042Suche in Google Scholar PubMed
[4] B. O’Brien, W. Carroll: Acta Biomater. 5 (2009) 945–958. DOI:10.1016/j.actbio.2008.11.01210.1016/j.actbio.2008.11.012Suche in Google Scholar PubMed
[5] H. Hermawan, D. Dubé, D. Mantovani: Acta Biomater. 6 (2010) 1693–1697. DOI:10.1016/j.actbio.2009.10.00610.1016/j.actbio.2009.10.006Suche in Google Scholar PubMed
[6] M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf: Heart 86 (2001) 563–569. DOI:10.1136/heart.86.5.56310.1136/heart.86.5.563Suche in Google Scholar PubMed PubMed Central
[7] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich: Heart 89 (2003) 651–656. DOI:10.1136/heart.89.6.65110.1136/heart.89.6.651Suche in Google Scholar PubMed PubMed Central
[8] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias: Biomaterials 27 (2006) 1728–1734. DOI:10.1016/j.biomaterials.2005.10.00310.1016/j.biomaterials.2005.10.003Suche in Google Scholar PubMed
[9] R. Waksman: J. Interv. Cardiol. 19 5 (2006) 414–421. DOI:10.1111/j.1540-8183.2006.00187.x10.1111/j.1540-8183.2006.00187.xSuche in Google Scholar PubMed
[10] S. Zhu, N. Huang, L. Xu, Y. Zhang, H. Liu, H. Sun, Y. Leng: Mater. Sci. Eng. C29 (2009) 1589–1592. DOI:10.1016/j.msec.2008.08.03710.1016/j.msec.2008.08.037Suche in Google Scholar
[11] A. Purnama, H. Hermawan, J. Couet, D. Mantovani: Acta Biomater. 6 (2010) 1800–1807. DOI:10.1016/j.actbio.2010.02.02710.1016/j.actbio.2010.02.027Suche in Google Scholar
[12] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. von Schnakenburg: Biomaterials 27 (2006) 4955–4962. DOI:10.1016/j.biomaterials.2006.05.02910.1016/j.biomaterials.2006.05.029Suche in Google Scholar
[13] H. Hermawan, D. Dubé, D. Mantovani: Adv. Mater. Res. Vol. 15–17 (2007) 107–112.Suche in Google Scholar
[14] M. Schinhammer, A.C. Hänzi, J.F. Löffler, P. Uggowitzer: Acta Biomater. 6 (2006) 1705–1713. DOI:10.1016/j.actbio.2009.07.03910.1016/j.actbio.2009.07.039Suche in Google Scholar
[15] B. Liu, Y.F. Zheng: Acta Biomater. 7 (2011) 1407–1420. DOI:10.1016/j.actbio.2010.11.00110.1016/j.actbio.2010.11.001Suche in Google Scholar
[16] H. Hermawan, A. Purnama, D. Dube, J. Couet, D. Mantovani: Acta Biomater. 6 (2006) 1825–1860.Suche in Google Scholar
[17] H. Hermawan, D. Mantovani: Acta Biomater. 9 (2013) 8585–8592. DOI:10.1016/j.actbio.2013.04.02710.1016/j.actbio.2013.04.027Suche in Google Scholar
[18] B. Predel, in: O. Madelung (Ed.) Landolt-Börnstein, Group IV – physical chemistry, Vol 5a, Berlin: Springer-Verlag (1998), 362–365.Suche in Google Scholar
[19] C. Borchers, P. Troche, C. Herweg, J. Hoffmann: J. Mater. Sci. 37 (2002) 731–736. DOI:10.1023/A:101388362960510.1023/A:1013883629605Suche in Google Scholar
[20] D. Amram, E. Rabkin: Acta Mater. 61 (2013) 4113–4126. DOI:10.1016/j.actamat.2013.03.03810.1016/j.actamat.2013.03.038Suche in Google Scholar
[21] H. Ebert, J. Abart, J. Voitländer: Z. Phys. Chem. 144 (1985) 223–229. DOI:10.1524/zpch.1985.144.144.22310.1524/zpch.1985.144.144.223Suche in Google Scholar
[22] G. Neumann, C. Tuijn: Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Pergamon imprint of Elsevier, Oxford (2009).Suche in Google Scholar
[23] M. Ellner, K. Kolatschek, B. Predel: J. Less-Common Met. (1991) 170, 171–184. DOI:10.1016/0022-5088(91)90062-910.1016/0022-5088(91)90062-9Suche in Google Scholar
[24] K.H.J. Buschow, P.G. Van Engen, R. Jongebreur: J. Magn. Magn. Mater. 38 (1983) 1–22. DOI:10.1016/0304-8853(83)90097-510.1016/0304-8853(83)90097-5Suche in Google Scholar
[25] R.G. Chaudhuri, S. Paria: Chem. Rev. 112 (2012) 2373–2433. DOI:10.1021/cr100449n10.1021/cr100449nSuche in Google Scholar PubMed
[26] A. Gautam, F.C.J.M. van Veggel: J. Mater. Chem. B 1 (2013) 5186. DOI:10.1039/c3tb20738b10.1039/c3tb20738bSuche in Google Scholar PubMed
[27] X. Cai, C.L. Wang, H.H. Chen, C.C. Chien, S.F. Lai, Y.Y. Chen, T.E. Hua, I.M. Kempson, Y. Hwu, C.S. Yang, G. Margaritondo: Nanotechnology 21 (2010) 335604. DOI:10.1088/0957-4484/21/1/01570710.1088/0957-4484/21/1/015707Suche in Google Scholar PubMed
[28] Q. Li, Y. Cao: Preparation and Characterization of Gold Nanorods, Nanorods, Orhan Yalcin (Ed.), ISBN: 978-953-51-0209-0, InTech publishing. DOI:10.5772/3588010.5772/35880Suche in Google Scholar
[29] C.J. Johnson, E. Dujardin, S.A. Davis, C.J. Murphy, S. Mann: J. Mater. Chem. 12 (2002) 1765–1770. DOI:10.1039/b200953f10.1039/b200953fSuche in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Artikel in diesem Heft
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences