Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
-
Malgorzata Aleksandrzak
Abstract
TiO2-reduced graphene oxide nanocomposites with different diameters and crystallinity of titania nanoparticles were synthesized via the sol-gel method followed by calcination in air or treatment under vacuum. The materials were characterized with transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, photoluminescence spectroscopy and diffuse-reflectance UV–vis spectroscopy. The photocatalytic activity of the resulting materials was examined in the process of phenol decomposition under UV–vis light irradiation. The influences of TiO2 loading and calcination treatment on photocatalytic activity of the composites were investigated. It was found that higher TiO2 concentrations resulted in higher photocatalytic activity. This is in agreement with the band gap energy values, as lower visible light absorption and higher Eg values were obtained for the samples prepared with higher TiO2 loading. Furthermore, photoactivity was affected by the calcination treatment. Higher activity under UV–vis was shown by the samples calcinated under vacuum, which was attributed to the better crystallinity compared to the samples treated with air.
References
[1] E.Lee, J.-Y.Hong, H.Kang, J.Jang: J. Hazard. Mater. 219–220 (2012) 13.Suche in Google Scholar
[2] A.A.Ismail, H.Bouzid: J. Colloid Interface Sci. 404 (2013) 127. 10.1016/j.jcis.2013.04.032Suche in Google Scholar PubMed
[3] F.Su, J.Lu, Y.Tian, X.Ma, J.Gong: Phys. Chem. Chem. Phys. 15 (2013) 12026. 10.1039/c2cp43523cSuche in Google Scholar PubMed
[4] P.Wei, J.Liu, Z.Li: Ceram. Int. 39 (2013) 5387. 10.1016/j.ceramint.2012.06.049Suche in Google Scholar
[5] W.Tu, Y.Zhou, Q.Liu, Z.Tian, X.Chen, H.Zhang, J.Liu, Z.Zou: Adv. Funct. Mater. 22 (2012) 1215. 10.1002/adfm.201102566Suche in Google Scholar
[6] W.Wang, J.Yu, Q.Xiang, B.Cheng: Appl. Catal. B119–120 (2012) 109.Suche in Google Scholar
[7] J.Hou, Ch.Yang, Z.Wang, S.Jiao, H.Zhu: Appl. Catal. B129 (2013) 333. 10.1016/j.apcatb.2012.09.009Suche in Google Scholar
[8] L.M.AL-Harbi, E.H.El-Mossalamy: Mod. Appl. Sci. 5 (2011) 130. 10.5539/mas.v5n2p87Suche in Google Scholar
[9] X.Chen, S.S.Mao: Chem. Rev. 107 (2007) 2891. 10.1021/cr0500535Suche in Google Scholar PubMed
[10] W.-S.Wang, H.Du, R.-X.Wang, T.Wen, A.-WXu: Nanoscale5 (2013) 3315. 10.1039/c3nr00191aSuche in Google Scholar PubMed
[11] Y.L.Wei, K.W.Chen: J. Vac. Sci. Technol. B27 (2009) 1385. 10.1116/1.3079700Suche in Google Scholar
[12] K.Gupta, R.P.Singh, A.PandeyA.Pandey: Beilstein J. Nanotechnol. 4 (2013) 345. 10.3762/bjnano.4.40Suche in Google Scholar PubMed PubMed Central
[13] Y.Cong, J.Zhang, F.Chen, M.Anpo: J. Phys. Chem. C111 (2007) 6976. 10.1021/jp066362wSuche in Google Scholar
[14] T.Ohno, T.Umebayashi, M.Matsumura: Appl. Catal. A265 (2004) 115. 10.1016/j.apcata.2004.01.007Suche in Google Scholar
[15] F.B.Li, X.Z.Li: Chemosphere48 (2002) 1103. 10.1016/S0045-6535(02)00201-1Suche in Google Scholar
[16] M.A.Behnajady, N.Modirishahla, M.Shokri, B.Rad: Glob. NEST J. 10 (2008) 1.Suche in Google Scholar
[17] M.Noorjahan, V. DurgaKumari, M.Subrahmanyam, P.Boule: Appl. Catal. B47 (2004) 209. 10.1016/j.apcatb.2003.08.004Suche in Google Scholar
[18] M.Bouslama, M.C.Amamra, Z.Jia, M. BenAmar, K.Chhor, O.Brinza, M.Abderrabba, J.-L.Vignes, A.Kanaev: ACS Catal. 2 (2012) 1884. 10.1021/cs300033ySuche in Google Scholar
[19] H.-J.Kim, Y.-G.Shul, H.Han: Top. Catal. 35 (2005) 287. 10.1007/s11244-005-3836-ySuche in Google Scholar
[20] K.Woan, G.Pyrgiotakis, W.Sigmund: Adv. Mater. 21 (2009) 2233. 10.1002/adma.200802738Suche in Google Scholar
[21] B.Y.Zhu, S.Murali, W.Cai, X.Li, J. WonSuk, J.R.Potts, R.S.Ruoff: Adv. Mater. 22 (2010) 3906. 10.1002/adma.200903623Suche in Google Scholar PubMed
[22] N.R.Khalid, E.Ahmed, Z.Hong, Y.Zhang, M.Ullah, M.Ahmed: Ceram. Int. 39 (2013) 3569. 10.1016/j.ceramint.2012.05.090Suche in Google Scholar
[23] B.Cao, S.Cao, P.Dong, J.Gao: J. Wang: Mater. Lett. 93 (2013) 349.Suche in Google Scholar
[24] B.F.Machado, P.Serp: Catal. Sci. Technol. 2 (2012) 54. 10.1039/c1cy00361eSuche in Google Scholar
[25] P.V.Kamat: J. Phys. Chem. Lett. 1 (2010) 520. 10.1021/jz100002jSuche in Google Scholar
[26] K.Zhou, Y.Zhu, X.Yang, X.Jiang, C.Li: New J. Chem. 35 (2011) 353. 10.1039/c0nj00623hSuche in Google Scholar
[27] H.Kim, G.H.Moon, D.Monllor-Satoca, Y.Park, W.Choi: J. Phys. Chem. C116 (2012) 1535. 10.1021/jp2080622Suche in Google Scholar
[28] G.Williams, B.Seger, P.V.Kamat: ACS Nano2 (2008) 1487. 10.1021/nn800251fSuche in Google Scholar PubMed
[29] H.Zhang, X.Lv, Y.Li, Y.Wang, J.Li: ACS Nano4 (2009) 380. 10.1021/nn901221kSuche in Google Scholar PubMed
[30] D.C.Marcano, D.V.Kosynkin, J.M.Berlin, A.Sinitskii, Z.Sun, A.Slesarev, L.B.Alemany, W.Lu, J.M.Tour: ACS Nano4 (2010) 4806. 10.1021/nn1006368Suche in Google Scholar PubMed
[31] E.J.Mittemeijer, U.Welzel: Z. Kristallogr. 223 (2008) 552. 10.1524/zkri.2008.1213Suche in Google Scholar
[32] E.J.Mittemeijer, U.Welzel: Diffraction Line-Profile Analysis, in Modern Diffraction Methods, Wiley-VCH, Weinheim (2012). 10.1002/9783527649884Suche in Google Scholar
[33] L.L.Tan, W.J.Ong, S.P.Chai, A.R.Mohamed: Nanoscale Res. Lett. 8 (2013) 465. 10.1186/1556-276X-8-434Suche in Google Scholar PubMed PubMed Central
[34] K.Sakurai, M.Mizusawa: Anal. Chem. 82 (2010) 3519. 10.1021/ac9024126Suche in Google Scholar PubMed
[35] K.Thamaphat, P.Limsuwan, B.Ngotawornchai: Kasetsart J. Nat. Sci. 42 (2008) 357.Suche in Google Scholar
[36] Z.Ji, G.Zhu, X.Shen, H.Zhou, C.Wu, M.Wang: New J. Chem. 36 (2012) 1774. 10.1039/c2nj40133aSuche in Google Scholar
[37] H.Zhang, J.F.Banfield: Chem. Mater. 14 (2002) 4145. 10.1021/cm020072kSuche in Google Scholar
[38] S.Bykkam, R.K.Venkateswara, Ch.S.Chakra, T.Thunugunta: Int. J. Adv. Biotechnol. Res. 4 (2013) 142.Suche in Google Scholar
[39] R.J.Seresht, M.Jahanshahi, A.M.Rashidi, A.A.Ghoreyshi: Iran. J. Energy Environ. 4, Special Issue Nanotechnol. (2013) 53.Suche in Google Scholar
[40] Y.Fang, R.Wang, G.Jiang, H.Jin, Y.Wang, X.Sun, S.Wang, T.Wang: Bull. Mater. Sci. 35 (2012) 495. 10.1007/s12034-012-0338-ySuche in Google Scholar
[41] S.Sakthive, H.Kisch: Angew. Chem. Int. Ed. 42 (2003) 4908. 10.1002/anie.200351577Suche in Google Scholar PubMed
[42] Y.Yu, J.C.YuJ.-G.Yu, Y.-Ch.Kwok, Y.-K.Chef, J.-C.ZhaoL.Ding, W.-K.Ge, P.-K.Wong: Appl. Catal. A289 (2005) 186. 10.1016/j.apcata.2005.04.057Suche in Google Scholar
[43] T.Lu, R.Zhang, Ch.Hu, F.Chen, S.Duo, Q.Hubc: Phys. Chem. Chem. Phys. 15 (2013) 12963. 10.1039/c2cp42832fSuche in Google Scholar PubMed
[44] N.Farhangi, Y.Medina-Gonzalez, R.R.Chowdhury, P.A.Charpentier: Nanotechnology23 (2012) 294005. 10.1088/0957-4484/23/29/294005Suche in Google Scholar PubMed
[45] M.Wojtoniszak, B.Zielinska, X.Chen, R.J.Kalenczuk, E.Borowiak-Palen: J. Mater. Sci. 47 (2012) 3185. 10.1007/s10853-011-6153-9Suche in Google Scholar
[46] B.Zielinska, E.Mijowska, R.J.Kalenczuk: Mater. Charact. 68 (2012) 71. 10.1016/j.matchar.2012.03.008Suche in Google Scholar
[47] A.-K.Chakraborty, Z.Qi, S.-Y.Chai, Ch.Lee, S.-Y.Park, D.-J.Jang: Appl. Catal. B93 (2010) 368. 10.1016/j.apcatb.2009.10.010Suche in Google Scholar
[48] H.Zhang, X.Lv, Y.Li, Y.Wang, J.Li: ACS Nano4 (2009) 380. 10.1021/nn901221kSuche in Google Scholar PubMed
[49] L.Gu, J.Wang, H.Cheng, Y.Zhao, L.Liu, X.Han: ACS Appl. Mater. Interfaces5 (2012) 3085. 10.1021/am303274tSuche in Google Scholar PubMed
[50] W.Geng, H.Liub, X.Yao: Phys. Chem. Chem. Phys. 15 (2013) 6025. 10.1039/c2cp43680aSuche in Google Scholar PubMed
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Diffusivities and atomic mobilities of an Sn–Ag–Bi–Cu–Pb melt
- Experimental study of the phase relations in the Fe–Cr–Si ternary system at 700°C
- Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys
- Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy
- Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
- Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
- Effect of ageing time on mechanical properties and tribological behaviour of aluminium hybrid composite
- Microstructure and tensile properties of a friction stir welded Al–Mg–Si alloy
- Lüders effect in Al 99.7% extruded via the KoBo method
- Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
- Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel
- X-ray stress measurement with two-dimensional detector based on Fourier analysis
- People
- People
- People
- DGM News
- Personal
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Diffusivities and atomic mobilities of an Sn–Ag–Bi–Cu–Pb melt
- Experimental study of the phase relations in the Fe–Cr–Si ternary system at 700°C
- Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys
- Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy
- Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
- Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
- Effect of ageing time on mechanical properties and tribological behaviour of aluminium hybrid composite
- Microstructure and tensile properties of a friction stir welded Al–Mg–Si alloy
- Lüders effect in Al 99.7% extruded via the KoBo method
- Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
- Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel
- X-ray stress measurement with two-dimensional detector based on Fourier analysis
- People
- People
- People
- DGM News
- Personal