Home Technology Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
Article
Licensed
Unlicensed Requires Authentication

Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys

  • Xingming Zhang , Yanxiang Li , Yuan Liu and Huawei Zhang
Published/Copyright: September 15, 2014

Abstract

In this study, the influence of the solidification temperature range of an alloy system on Gasar structures is investigated from the aspect of solidification mode and mushy zone length. The solidification mode and mushy zone length for various Cu–Mn alloys during unidirectional solidification are predicted by theoretical analysis. The calculated data indicate that it is reasonable, possible, but difficult to fabricate porous Cu-34.6 wt.% Mn, Cu-24 wt.% Mn, and Cu-46.6 wt.% Mn alloys by the Gasar process, respectively. Accordingly, lotus-type porous Cu-34.6 wt.% Mn alloy with regularly oriented pores was prepared and solidified with a cellular structure. Porous Cu-24 wt.% Mn alloy with directional pores could be fabricated, solidifying with a columnar dendritic structure. Porous Cu-46.6 wt.% Mn alloy with irregular large pores was obtained, and solidified with an equiaxed dendritic structure.


* Correspondence address, Prof. Yanxiang Li, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China, Tel.: +86-10-62773640, Fax: +86-10-62773640, E-mail:

References

[1] V.Shapovalov: US. Pat. 5181549 (1993).Search in Google Scholar

[2] V.Shapovalov: Mater. Sci. Forum539–543 (2007) 1183.10.4028/www.scientific.net/MSF.539-543.1183Search in Google Scholar

[3] V.Shapovalov, L.Boyko: Adv. Eng. Mater. 6 (2004) 407. 10.1002/adem.200405148Search in Google Scholar

[4] H.Nakajima, T.Ikeda, S.K.Hyun: Adv. Eng. Mater. 6 (2004) 377. 10.1002/adem.200405149Search in Google Scholar

[5] J.S.Park, S.K.Hyun, S.Suzuki, H.Nakajima: Metall. Mater. Trans. A40 (2009) 406. 10.1007/s11661-008-9710-3Search in Google Scholar

[6] T.Ikeda, T.Aoki, H.Nakajima: Metall. Mater. Trans. A36 (2005) 77. 10.1007/s11661-005-0140-1Search in Google Scholar

[7] Z.J.Li, Q.L.Jin, T.W.Yang, Y.H.Jiang, R.Zhou: Acta Metall. Sin. 49 (2013) 757.10.3724/SP.J.1037.2012.00723Search in Google Scholar

[8] G.R.Jiang: PhD Thesis, Tsinghua University, Beijing (2010).Search in Google Scholar

[9] L.V.Boiko: Mater. Sci. 36 (2000) 506. 10.1023/A:1011349702487Search in Google Scholar

[10] G.R.Jiang, Y.X.Li, Y.Liu: Trans. Nonferr. Metal. Soc. China21 (2011) 88. 10.1016/S1003-6326(11)60682-1Search in Google Scholar

[11] H.Hoshiyama, T.Ikeda, H.Nakajima: High Temp. Mater. Processes26 (2007) 303. 10.1515/HTMP.2007.26.4.303Search in Google Scholar

[12] T.Ide, M.Tane. S.K.Hyun, H.Nakajima: Mater. Trans. 47 (2006) 2116. 10.2320/matertrans.47.211Search in Google Scholar

[13] M.Sugiyama, S.K.Hyun, M.Tane, H.Nakajima: High Temp. Mater. Processes26 (2007) 297. 10.1515/HTMP.2007.26.4.297Search in Google Scholar

[14] W.W.Mullins, R.F.Sekerka: J. Appl. Phys. 35 (1964) 444. 10.1063/1.1713333Search in Google Scholar

[15] R.F.Sekerka: J. Appl. Phys. 36 (1965) 264. 10.1063/1.1713887Search in Google Scholar

[16] W.Kurz, D.J.Fisher: Acta Metall. 29 (1981) 11. 10.1016/0001-6160(81)90082-1Search in Google Scholar

[17] R.Trivedi, W.Kurz: Int. Mater. Rev. 39 (1994) 49. 10.1179/095066094790326220Search in Google Scholar

[18] R.Trivedi, W.Kurz: Acta Metall. Mater. 42 (1994) 15. 10.1016/0956-7151(94)90044-2Search in Google Scholar

Received: 2014-01-29
Accepted: 2014-03-19
Published Online: 2014-09-15
Published in Print: 2014-09-15

© 2014, Carl Hanser Verlag, München

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111096/pdf
Scroll to top button