Startseite Effect of Mn doping on the microstructure and dielectric properties of BaHf0.1Ti0.9O3 ceramics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Mn doping on the microstructure and dielectric properties of BaHf0.1Ti0.9O3 ceramics

  • Chunlin Fu , Jingnan Liang , Wei Cai , Gang Chen und Xiaoling Deng
Veröffentlicht/Copyright: 30. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Pure and Mn-doped barium hafnate titanate ceramics (BaHf0.1MnxTi0.9xO3, where x = 0, 0.02, 0.05, 0.08, and 0.1) are prepared by means of a sol–gel method. The microstructures, dielectric properties and ferroelectric properties of the ceramics are investigated. X-ray diffraction patterns indicate that Mn4+ ions enter the unit cell to maintain the perovskite structure of solid solution. Consequently, the tetragonality gradually decreases with increased Mn content. The grains of Mn-doped BaHf0.1Ti0.9O3 ceramics become uniform and almost spherical. The diffuseness constant decreases from 1.89 to 1.48 with increased Mn content from 0 at.% to 5 at.%. Hysteresis loops can be observed in all samples from 30 °C to 90 °C, which may be due to the relaxor ferroelectric property of these ceramics.


* Correspondence address, Prof. Chunlin Fu, Huxi University Town, School of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China, Tel.: +86 23 6502 3479, Fax: +86 23 6502 3706, E-mail:

References

[1] J.Hoffman, X.Hong, C.H.Ahn: Nanotechnology22 (2011) 254014. PMid: 21572192; 10.1088/0957-4484/22/25/254014Suche in Google Scholar PubMed

[2] S.Sheng, C.K.Ong: J. Appl. Phys.111 (2012) 044506. 10.1063/1.3686615Suche in Google Scholar

[3] S.Yin, G.Niu, B.Vilquin, B.Gautier, G. LeRhun, E.Defay, Y.Robach: Thin Solid Films520 (2012) 4572. 10.1016/j.tsf.2011.11.054Suche in Google Scholar

[4] O.Guillon, J.Chang, S.Schaab, S.J.L.Kang: J. Am. Ceram. Soc.95 (2012) 2277. 10.1111/j.1551-2916.2012.05196.xSuche in Google Scholar

[5] X.Yang, X.Su, M.Shen, Y.Xin, L.Zhang, M.Hua, Y.Chen, V.G.Harris: Adv. Mater.24 (2012) 1202. 10.1002/adma.201104078Suche in Google Scholar PubMed

[6] R.Sagar, S.Madolappa, R.L.Raibagkar: Solid State Sci.14 (2012) 211. 10.1016/j.solidstatesciences.2011.11.006Suche in Google Scholar

[7] B.Garbarz-Glos, K.Bormanis, D.Sitko: Ferroelectrics417 (2011) 118. 10.1080/00150193.2011.578508Suche in Google Scholar

[8] C.Laulhé, F.Hippert, J.Kreisel, A.Pasturel, A.Simon, J.L.Hazemann, R.Bellissent: Phase Transit.84 (2011) 438. 10.1080/01411594.2010.547153Suche in Google Scholar

[9] W.Cai, C.Fu, Z.Lin, X.Deng: Ceram. Int.37 (2011) 3643. 10.1016/j.ceramint.2011.06.024Suche in Google Scholar

[10] M.M.Vijatović Petrović, J.D.Bobić, T.Ramoška, J.Banys, B.D.Stojanović: Mater. Charact.62 (2011) 1000. 10.1016/j.matchar.2011.07.013Suche in Google Scholar

[11] X.Diez-Betriu, J.E.Garcia, C.Ostos, A.U.Boya, D.A.Ochoa, L.Mestres, R.Perez: Mater. Chem. Phys.125 (2011) 493. 10.1016/j.matchemphys.2010.10.027Suche in Google Scholar

[12] X.G.Tang, K.H.Chew, H.L.W.Chan: Acta Mater.52 (2004) 5177. 10.1016/j.actamat.2003.11.030Suche in Google Scholar

[13] W.Cai, C.Fu, J.Gao, X.Deng: J. Mater. Sci.-Mater. El.21 (2010) 317. 10.1007/s10854-009-9913-4Suche in Google Scholar

[14] Y.Y.Yao, C.H.Song, P.Bao, D.Su, X.M.Lu, J.S.Zhu, Y.N.Wang: J. Appl. Phys.95 (2004) 3126. 10.1063/1.1649456Suche in Google Scholar

[15] A.Dixit, S.B.Majumder, R.S.Katiyar, A.S.Bhalla: J. Mater. Sci.41 (2006) 87. 10.1007/s10853-005-5929-1Suche in Google Scholar

Received: 2012-12-12
Accepted: 2013-7-10
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110980/pdf?lang=de
Button zum nach oben scrollen