Home Effect of Mn doping on the microstructure and dielectric properties of BaHf0.1Ti0.9O3 ceramics
Article
Licensed
Unlicensed Requires Authentication

Effect of Mn doping on the microstructure and dielectric properties of BaHf0.1Ti0.9O3 ceramics

  • Chunlin Fu , Jingnan Liang , Wei Cai , Gang Chen and Xiaoling Deng
Published/Copyright: November 30, 2013
Become an author with De Gruyter Brill

Abstract

Pure and Mn-doped barium hafnate titanate ceramics (BaHf0.1MnxTi0.9xO3, where x = 0, 0.02, 0.05, 0.08, and 0.1) are prepared by means of a sol–gel method. The microstructures, dielectric properties and ferroelectric properties of the ceramics are investigated. X-ray diffraction patterns indicate that Mn4+ ions enter the unit cell to maintain the perovskite structure of solid solution. Consequently, the tetragonality gradually decreases with increased Mn content. The grains of Mn-doped BaHf0.1Ti0.9O3 ceramics become uniform and almost spherical. The diffuseness constant decreases from 1.89 to 1.48 with increased Mn content from 0 at.% to 5 at.%. Hysteresis loops can be observed in all samples from 30 °C to 90 °C, which may be due to the relaxor ferroelectric property of these ceramics.


* Correspondence address, Prof. Chunlin Fu, Huxi University Town, School of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China, Tel.: +86 23 6502 3479, Fax: +86 23 6502 3706, E-mail:

References

[1] J.Hoffman, X.Hong, C.H.Ahn: Nanotechnology22 (2011) 254014. PMid: 21572192; 10.1088/0957-4484/22/25/254014Search in Google Scholar PubMed

[2] S.Sheng, C.K.Ong: J. Appl. Phys.111 (2012) 044506. 10.1063/1.3686615Search in Google Scholar

[3] S.Yin, G.Niu, B.Vilquin, B.Gautier, G. LeRhun, E.Defay, Y.Robach: Thin Solid Films520 (2012) 4572. 10.1016/j.tsf.2011.11.054Search in Google Scholar

[4] O.Guillon, J.Chang, S.Schaab, S.J.L.Kang: J. Am. Ceram. Soc.95 (2012) 2277. 10.1111/j.1551-2916.2012.05196.xSearch in Google Scholar

[5] X.Yang, X.Su, M.Shen, Y.Xin, L.Zhang, M.Hua, Y.Chen, V.G.Harris: Adv. Mater.24 (2012) 1202. 10.1002/adma.201104078Search in Google Scholar PubMed

[6] R.Sagar, S.Madolappa, R.L.Raibagkar: Solid State Sci.14 (2012) 211. 10.1016/j.solidstatesciences.2011.11.006Search in Google Scholar

[7] B.Garbarz-Glos, K.Bormanis, D.Sitko: Ferroelectrics417 (2011) 118. 10.1080/00150193.2011.578508Search in Google Scholar

[8] C.Laulhé, F.Hippert, J.Kreisel, A.Pasturel, A.Simon, J.L.Hazemann, R.Bellissent: Phase Transit.84 (2011) 438. 10.1080/01411594.2010.547153Search in Google Scholar

[9] W.Cai, C.Fu, Z.Lin, X.Deng: Ceram. Int.37 (2011) 3643. 10.1016/j.ceramint.2011.06.024Search in Google Scholar

[10] M.M.Vijatović Petrović, J.D.Bobić, T.Ramoška, J.Banys, B.D.Stojanović: Mater. Charact.62 (2011) 1000. 10.1016/j.matchar.2011.07.013Search in Google Scholar

[11] X.Diez-Betriu, J.E.Garcia, C.Ostos, A.U.Boya, D.A.Ochoa, L.Mestres, R.Perez: Mater. Chem. Phys.125 (2011) 493. 10.1016/j.matchemphys.2010.10.027Search in Google Scholar

[12] X.G.Tang, K.H.Chew, H.L.W.Chan: Acta Mater.52 (2004) 5177. 10.1016/j.actamat.2003.11.030Search in Google Scholar

[13] W.Cai, C.Fu, J.Gao, X.Deng: J. Mater. Sci.-Mater. El.21 (2010) 317. 10.1007/s10854-009-9913-4Search in Google Scholar

[14] Y.Y.Yao, C.H.Song, P.Bao, D.Su, X.M.Lu, J.S.Zhu, Y.N.Wang: J. Appl. Phys.95 (2004) 3126. 10.1063/1.1649456Search in Google Scholar

[15] A.Dixit, S.B.Majumder, R.S.Katiyar, A.S.Bhalla: J. Mater. Sci.41 (2006) 87. 10.1007/s10853-005-5929-1Search in Google Scholar

Received: 2012-12-12
Accepted: 2013-7-10
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110980/pdf
Scroll to top button