Nano hydroxyapatite–polysulfone coating on Ti-6Al-4V substrate by electrospinning
-
S. Santhosh
and S. Balasivanandha Prabu
Abstract
Titanium alloys that are used as implant materials generally fail due to the occurrence of significant localized corrosion by interactions with corrosive body fluid. Implants also undergo loosening and detachment from the bone due to its poor biocompatibility. In this study, nano hydroxyapatite synthesized via a wet chemical method, using calcium oxide obtained from sea shells, was used to prepare a composite coating with polysulfone and was electrospun on to Ti-6Al-4V alloy. The controlling parameters of electrospinning were varied to study the characteristics of the coating followed by bioactivity studies, to ensure the biocompatibility of the coated material.
References
[1] G.E.Park, T.J.Webster: J. Biomed. Nanotechnol.1 (2005) 18. 10.1166/jbn.2005.003Search in Google Scholar
[2] U. KamachiMudali, T.M.Sridhar, B.Raj: Sadhana28 (2003) 601. 10.1007/BF02706450Search in Google Scholar
[3] T.J.Webster, C.Ergun, R.H.Doremus, R.W.Siegel, R.Bizios: Biomaterials21 (2000) 1803. 10.1016/S0142-9612(00)00075-2Search in Google Scholar
[4] V.D.Sergey: Biomaterials31 (2010)1465. PMid: 19969343; 10.1016/j.biomaterials.2009.11.050Search in Google Scholar
[5] L.L.Hench: J. Am. Ceram. Soc.81 (1998) 1705. 10.1111/j.1151-2916.1998.tb02540.xSearch in Google Scholar
[6] W.Suchanek, M.Yashima, M.Kakihana, M.Yoshimura: Biomaterials17 (1996) 1715. 10.1016/0142-9612(96)87652-6Search in Google Scholar
[7] Y.Cai, R.Tang: J. Mater. Chem.18 (2008) 3775. 10.1039/b805407jSearch in Google Scholar
[8] M.P.Ginebra, F.C.M.Driessens, J.A.Planell: Biomaterials25 (2004) 3453. PMid: 15020119; 10.1016/j.biomaterials.2003.10.049Search in Google Scholar
[9] T.J.Webster, J.Y.Ying (Ed.): Nanostructured materials, Academic Press (2001) 125.Search in Google Scholar
[10] H.G.Pfaff, G.Willmann, R.Pothig, P.Ducheyne, D.Christiansen (Eds.): Bioceramics, Butterworth-Heinemann, London (1993) 421.Search in Google Scholar
[11] G.K.Lim, J.Wang, S.C.Ng, C.H.Chew, L.M.Gan: Biomaterials18 (1997) 1433. 10.1016/S0142-9612(97)00081-1Search in Google Scholar
[12] P.P.Wang, C.H.Li, H.Y.Gong, X.E.Jiang, H.Q.Wang, K.X.Li: Powder Technol.203 (2010) 315. 10.1016/j.powtec.2010.04.023Search in Google Scholar
[13] J.Hu, J.J.Russel, B.Ben-Nissan: J. Mater. Sci. Lett.20 (2001) 85. 10.1023/A:1006735319725Search in Google Scholar
[14] K.S.Vecchio, X.Zhang, B.M.Jennifer, M.Wang, W.K.Choll: Acta Biomaterialia3 (2007) 785. PMid: 17512809; 10.1016/j.actbio.2007.03.009Search in Google Scholar
[15] A.F.Lemos, J.H.G.Rocha, S.S.F.Quaresma, S.Kannan, F.N.Oktar, S.Agathopoulos: J. Eur. Ceram. Soc.26 (2006) 3639. 10.1016/j.jeurceramsoc.2005.12.011Search in Google Scholar
[16] H.Ivankovic, G. GallegoFerrer, E.Tkalcec, S.Orlic, M.Ivankovic: J. Mater. Sci: Mater Med.20 (2009) 1039. PMid: 19132509; 10.1007/s10854-009-9927-ySearch in Google Scholar
[17] MinWang: Biomaterials24 (2003) 2133. 10.1016/S0142-9612(02)00434-9Search in Google Scholar
[18] M.I.Shtilman: Polymer Science Series A52 (2010) 884. 10.1134/S0965545X10090038Search in Google Scholar
[19] Z.M.Huang, Y.Z.Zhang, M.Kotaki, S.Ramakrishna: Compos. Sci. Technol.63 (2003) 2223. 10.1016/S0266-3538(02)00220-8Search in Google Scholar
[20] D.H.Reneker, A.L.Yarin: Polymer49 (2008) 2387. 10.1016/j.polymer.2008.02.002Search in Google Scholar
[21] C.J.Luo, M.Nangrejo, M.Edirisinghe: Polymer51 (2010) 1654. 10.1016/j.polymer.2009.11.024Search in Google Scholar
[22] E.J.Chong, T.T.Phan, I.J.Lim, Y.Z.Zhang, B.H.Bay, S.Ramakrishna: Acta Mater.3 (2007) 321.Search in Google Scholar
[23] S.Ramakrishna, K.Fujihara, W.E.Teo, T.Yong, Z.Ma, R.Ramaseshan: Materials Today9 (2006) 40. 10.1016/S1369-7021(06)71389-XSearch in Google Scholar
[24] J.M.Cao, J.Feng, S.G.Deng, X.Chang, J.Wang, J.S.Liu: J. Mater. Sci.40 (2005) 6311. 10.1007/s10853-005-4221-8Search in Google Scholar
[25] Y.Fang, D.K.Agrawal, D.M.Roy, R.Roy: J. Mater. Res.9 (1994) 180. 10.1557/JMR.1994.0180Search in Google Scholar
[26] T.Kokubo, H.Kushitani, S.Sakka, T.Kitsugi, T.Yamamuro: J. Biomed. Mater. Res.24 (1990) 721. PMid: 2361964; 10.1002/jbm.820240306Search in Google Scholar
[27] J.Langford, A.Wilson: J. Appl. Crystallogr.11 (1978) 102. 10.1107/S0021889878012844Search in Google Scholar
[28] A.Chanda, S.Dasgupta, S.Bose, A.Bandyopadhyay: Mater. Sci. Eng. C29 (2009) 1144. 10.1016/j.msec.2008.09.008Search in Google Scholar
[29] E.J.Mittemeijer, U.Welzel: Modern Diffraction Methods, John Wiley & Sons (2013). PMid: 2360036410.1002/9783527649884Search in Google Scholar
[30] A.J.Ruys, M.Wei, C.C.Sorrell, M.R.Dickson, A.Brandwood, B.K.Milthome: Biomaterials15 (1995) 409. 10.1016/0142-9612(95)98859-CSearch in Google Scholar
[31] N. RameshBabu, K. PrasadRao, T.S. SampathKumar: J. Mater. Sci.40 (2005) 6319. 10.1007/s10853-005-2957-9Search in Google Scholar
[32] A.Rapacz-Kmita, A.Elósarczyk, Z.C.Paszkiewicz, C.Paluszkiewicz: J. Mol. Struct.704 (2004) 65. 10.1016/j.molstruc.2004.02.047Search in Google Scholar
[33] X.Y.Yuan, Y.Y.Zhang, C.H.Dong, J.Sheng: Polym. Int.53 (2004) 1704. 10.1002/pi.1122Search in Google Scholar
[34] L.Wannatong, A.Sirivat, P.Supaphol: Polym. Int.53 (2004) 1851. 10.1002/pi.1599Search in Google Scholar
[35] M.M.Demir, I.Yilgor, E.Yilgor, B.Erman: Polymer43 (2002) 3303. 10.1016/S0032-3861(02)00136-2Search in Google Scholar
[36] S.Sukigara, M.Gandhi, J.Ayutsede, M.Micklus, F.Ko: Polymer44 (2003) 5721. 10.1016/S0032-3861(03)00532-9Search in Google Scholar
[37] S.Santhosh, S. BalasivanandhaPrabu, P.Sureshkumar: Adv. Sci. Eng. Med.4 (2012) 421. 10.1166/asem.2012.1196Search in Google Scholar
[38] K.H.Chang, H.L.Lin: J. Polym. Res.16 (2009) 611. 10.1007/s10965-008-9266-3Search in Google Scholar
[39] C.S.Ki, D.H.Baek, K.D.Gang, K.H.Lee, I.C.Um, Y.H.Park: Polymer46 (2005) 5094. 10.1016/j.polymer.2005.04.040Search in Google Scholar
[40] A.K.Haghi, M.Akbari: Phys. Status. Solidi.204 (2007) 1830. 10.1002/pssa.200675301Search in Google Scholar
[41] C.L.Pai, M.C.Boyce, G.C.Rutledge: Macromolecules42 (2009) 2102. 10.1021/ma802529hSearch in Google Scholar
[42] S.Yu, K.P.Hariram, R.Kumar, P.Cheang, K.K.Aik: Biomaterials26 (2005) 2343. PMid: 15585237; 10.1016/j.biomaterials.2004.05.012Search in Google Scholar PubMed
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Critical sizes for coherent to semicoherent transition in precipitates
- Thixoformability evaluation of AA2011 and AA2014 alloys
- Joint strength of friction stir welded AISI 304 austenitic stainless steels
- Optimization of process parameters in explosive cladding of titanium/stainless steel 304L plates
- Optimization of the hot rolling parameters for evaluation of the formability of Nb-microalloyed steel sheet by using the Taguchi method
- XPS measurements of LDX 2101 duplex steel surface after magnetoelectropolishing
- Phase equilibria of the Al-Cr-Pr ternary system at 773 K
- Processing and mechanical characterisation of monolithic silicon carbide ceramic consolidated by spark plasma sintering (SPS)
- Effect of Mn doping on the microstructure and dielectric properties of BaHf0.1Ti0.9O3 ceramics
- Nano hydroxyapatite–polysulfone coating on Ti-6Al-4V substrate by electrospinning
- Photocatalytic and self-cleaning properties of SiO2/TiO2/SiO2 nanostructured thin film
- Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties
- Modification of the luminescent properties of ZnS nanoparticles by the adsorbed species
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Critical sizes for coherent to semicoherent transition in precipitates
- Thixoformability evaluation of AA2011 and AA2014 alloys
- Joint strength of friction stir welded AISI 304 austenitic stainless steels
- Optimization of process parameters in explosive cladding of titanium/stainless steel 304L plates
- Optimization of the hot rolling parameters for evaluation of the formability of Nb-microalloyed steel sheet by using the Taguchi method
- XPS measurements of LDX 2101 duplex steel surface after magnetoelectropolishing
- Phase equilibria of the Al-Cr-Pr ternary system at 773 K
- Processing and mechanical characterisation of monolithic silicon carbide ceramic consolidated by spark plasma sintering (SPS)
- Effect of Mn doping on the microstructure and dielectric properties of BaHf0.1Ti0.9O3 ceramics
- Nano hydroxyapatite–polysulfone coating on Ti-6Al-4V substrate by electrospinning
- Photocatalytic and self-cleaning properties of SiO2/TiO2/SiO2 nanostructured thin film
- Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties
- Modification of the luminescent properties of ZnS nanoparticles by the adsorbed species
- DGM News
- DGM News