Home Optimization of the hot rolling parameters for evaluation of the formability of Nb-microalloyed steel sheet by using the Taguchi method
Article
Licensed
Unlicensed Requires Authentication

Optimization of the hot rolling parameters for evaluation of the formability of Nb-microalloyed steel sheet by using the Taguchi method

  • Mohsen Ayaz , Daavood Mirahmadi Khaki , Nasrollah Bani Mostafa Arab and Ali Noroozi
Published/Copyright: November 30, 2013
Become an author with De Gruyter Brill

Abstract

In this paper, the influence of major hot rolling process parameters on strain hardening exponent and grain size as criteria for the formability of Nb-microalloyed steel sheet was investigated and an optimum level of parameters by using Taguchi grey relational analysis has been obtained. For this purpose, parameters of roughing, finishing and coiling temperatures were chosen and four levels for these temperatures were considered. Sixteen experiments for each response were conducted based on an orthogonal array of the Taguchi method. Analysis of variance, signal to noise ratios and grey relational grade were calculated in order to optimize strain hardening exponent and grain size of Nb-microalloyed steel sheets, simultaneously. It was observed that the roughing temperature of 1 050 °C; finishing temperature of 850 °C; and coiling temperature of 700 °C are the optimum parameter values producing better formability in terms of strain hardening exponent and grain size. The validity of Taguchi grey relational analysis to process optimization was also well established by means of confirmation tests.


* Correspondence address, Mohsen Ayaz, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran, Tel.: +989377463128, Fax: +982184812124, E-mail:

References

[1] Ya-binCao, Fu-renXiao, Gui-yingQiao, Xiao-bingZhang, BoLiao: Mater. Sci. Eng. A530 (2011) 277. 10.1016/j.msea.2011.09.086Search in Google Scholar

[2] F.Wang, Q.Zhu, J.Lin, T.A.Dean: J. Mater. Process. Tech.177 (2006) 530. 10.1016/j.jmatprotec.2006.03.197Search in Google Scholar

[3] J.G.Cheng, J.Zhang, C.C.Chu, J.Zhe: Int. J. Adv. Manuf. Technol.26 (2005) 1222. 10.1007/s00170-004-2096-5Search in Google Scholar

[4] T.Siwecki, A.Sandberg, W.Roberts, R.Lagneborg in: A.J.Ratz, G.A.Ratz, P.J.Wray (Eds.), Conf. Proc. TMS-AIME, Warrendale, USA (1982) 163.Search in Google Scholar

[5] J.L.Lanzagorta, D.Jorge-Badiola, I.Gutiérrez: Mater. Sci. Eng. A527 (2010) 934. 10.1016/j.msea.2009.09.007Search in Google Scholar

[6] B.Verlinden, J.Driver, I.Samajdar, R.D.Doherty in: R.W.Cahn (Ed.), Thermo-mechanical Processing of Metallic Materials, Pergamon Materials Series, Pergamon, UK (2007) 33.Search in Google Scholar

[7] A.J.DeArdo: Modern Thermomechanical Processing of Microalloyed Steel: A Physical Metallurgy Prespective, Proc. Int. Conference Microalloying ’95, Iron and Steel Society, Inc., Pittsburg, PA, USA (1995) 15.Search in Google Scholar

[8] M.C.Zhao, K.Yang, Y.Shan: Mat. Sci. Eng. A335 (2002) 14. 10.1016/S0921-5093(01)01904-9Search in Google Scholar

[9] H.Tamura, H.Sekine, T.Tanaka, C.Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels; Butterworth & Co. Ltd., London (1988).Search in Google Scholar

[10] D.T.LleweUyn, R.C.Hudd: Steels; Metallurgy and Applications, Reed Educational and Professional Publishing Ltd., Oxford (1998).Search in Google Scholar

[11] G.S.Peace: Taguchi method: A hands-on approach, Addision-Wesley, New York (1992).Search in Google Scholar

[12] D.S.Badkar, K.S.Pandey: Int. J. Adv. Manuf. Technol.52 (2011) 1067. 10.1007/s00170-010-2787-zSearch in Google Scholar

[13] M.Kurt, E.Bagci, Y.Kaynak: Int. J. Adv. Manuf. Technol.40 (2009) 458. 10.1007/s00170-007-1368-2Search in Google Scholar

[14] D.M.Khaki, V.A.Otaaghvar: Iron Steel Res. Int.18 (2011) 585.Search in Google Scholar

[15] P.L.Ross: Taguchi Techniques for Quality Engineering. McGraw-Hill Book Company, New York (1988).Search in Google Scholar

[16] R.K.Roy: A Primer on Taguchi Method, Van Nostrand Reinhold, New York (1990).Search in Google Scholar

[17] S.Basavarajappa, G.Chandramohan, J.P.Davim: Mater. Des.28 (2007) 1393. 10.1016/j.matdes.2006.01.006Search in Google Scholar

[18] M.S.Phadke: Quality engineering using robust design, Prentice-Hill, Englewood Cliffs, New Jersey (1989).Search in Google Scholar

[19] N.M.Mehata, S.Kamaruddin: Mater. Proc. Tech.211 (2011) 1989. 10.1016/j.jmatprotec.2011.06.014Search in Google Scholar

[20] E.Ahmad, T.Manzoor, N.Hussain, N.K.Qazi: Mater. Des.29 (2008) 450. 10.1016/j.matdes.2006.12.022Search in Google Scholar

[21] M.Gomez, P.Valles, S.F.Medina: Mat. Sci. Eng. A528 (2011) 4761. 10.1016/j.msea.2011.02.087Search in Google Scholar

[22] A.Bakkaloglu: Mater. Lett.56 (2002) 263. 10.1016/S0167-577X(02)00440-8Search in Google Scholar

[23] B.Eghbali, A.Abdollah-zadeh: Scripta Mater.53 (2005) 41. 10.1016/j.scriptamat.2005.03.014Search in Google Scholar

[24] X.S.Yi, W.X.Shi, S.L.Yu, X.H.Li, N.Sun, C.He: Desalination274 (2011) 7. 10.1016/j.desal.2010.10.019Search in Google Scholar

[25] J.L.Deng: J. Grey Syst.1 (1989) 1.Search in Google Scholar

[26] C.B.Chen, C.T.Lin, C.W.Chang, C.P.Ho: J. Tech.15 (2000) 25.Search in Google Scholar

[27] W.J.McTegart, A.Gattins: Hot deformation of austenite, AIME, NY (1976).Search in Google Scholar

[28] J.L.Lanzagorta, D.Jorge-Badiola, I.Gutiérrez: Mat. Sci. Eng. A527 (2010) 934. 10.1016/j.msea.2009.09.007Search in Google Scholar

[29] B.K.Panigrahi: B. Mater. Sci.24 (2001) 361. 10.1007/BF02708632Search in Google Scholar

[30] Q.-Y.Sha, G.-Y.Li, L.-F.Qiao, P.-Y.Yan: Proc. Sino-Swedish Structural Materials Symposium, Swedish (2007) 316.Search in Google Scholar

Received: 2012-9-11
Accepted: 2013-6-24
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110973/html
Scroll to top button