Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties
-
L. Z. Pei
, Y. Q. Pei , Y. K. Xie , C. G. Fan und Q. F. Zhang
Abstract
Manganese vanadate microtubes have been synthesized via a simple hydrothermal process using polyvinyl pyrrolidone as the surfactant. Scanning electron microscopy observation shows that polyvinyl pyrrolidone plays an essential role in the formation and phase transformation of the manganese vanadate microtubes. A polyvinyl pyrrolidone-assisted “Ostwald ripening” growth mechanism has been proposed to explain the formation process of the manganese vanadate microtubes. The electrochemical behavior of L-cysteine at the manganese vanadate microtube modified glassy carbon electrode has been analyzed. The manganese vanadate microtube modified glassy carbon electrode exhibits the performance for the electrochemical determination of L-cysteine with a detection limit of 9.2 μM and linear range of 0.01 – 2 mM.
References
[1] E.Andrukaitis: J. Power Sources68 (1997) 652. 10.1016/S0378-7753(96)02572-4Suche in Google Scholar
[2] T.Nakajima, M.Isobe, T.Tsuchiya, Y.Ueda, T.Manabe: Opt. Mater.32 (2010) 1618. 10.1016/j.optmat.2010.05.021Suche in Google Scholar
[3] Y.Sakurai, H.Ohtsuka, J.I.Yamaki: J. Electrochem. Soc.135 (1988) 32. 10.1149/1.2095582Suche in Google Scholar
[4] Y.Takeda, K.Itoh, R.Kanno, T.Icikawa, N.Imanishi, O.Yamamoto: J. Electrochem. Soc.138 (1991) 2566. 10.1149/1.2085588Suche in Google Scholar
[5] E.Andrukaitis, G.L.Torlone, I.R.Hill: J. Power Sources81–82 (1999) 651. 10.1016/S0378-7753(99)00094-4Suche in Google Scholar
[6] L.Tan, H.W.Liu: Inorg. Mater.46 (2010) 201. 10.1134/S0020168510020202Suche in Google Scholar
[7] F.Leroux, Y.Piffard, G.Ourvard, J.L.Mansot, D.Guyomard: Chem. Mater.11 (1999) 2948. 10.1021/cm991074gSuche in Google Scholar
[8] J.H.Liao, T.Drezen, F.Leroux, D.Guyomard, Y.Piffard: Eur. J. Solid State Inorg. Chem.33 (1996) 411.Suche in Google Scholar
[9] Y.Piffard, F.Leroux, D.Guyomard, J.L.Mansot, M.Tournoux: J. Power Sources68 (1997) 698. 10.1016/S0378-7753(96)02576-1Suche in Google Scholar
[10] S.S.Kim, H.Ikuta, M.Wakihara: Solid State Ionics139 (2001) 57. 10.1016/S0167-2738(00)00816-XSuche in Google Scholar
[11] M.Inagaki, T.Morishita, M.Hirano, V.Gupta, T.Nakajima: Solid State Ionics156 (2003) 275. 10.1016/S0167-2738(02)00679-3Suche in Google Scholar
[12] T.Morishita, H.Konno, Y.Izumi, M.Inagaki: Solid State Ionics177 (2006) 1347. 10.1016/j.ssi.2006.05.035Suche in Google Scholar
[13] T.Morishita, K.Nomura, T.Inamasu, M.Inagaki: Solid State Ionics176 (2005) 2235. 10.1016/j.ssi.2005.06.013Suche in Google Scholar
[14] Y.Liu, Y.T.Qian: Front. Chem. China3 (2008) 467. 10.1007/s11458-008-0061-9Suche in Google Scholar
[15] Y.Liu, Y.T.Qian: Front. Chem. China3 (2008) 275. 10.1007/s11458-008-0060-xSuche in Google Scholar
[16] L.Z.Pei, Y.Q.Pei, Y.K.Xie, C.Z.Yuan, D.K.Li, Q.F.Zhang: Mater. Res. in press (2012). 10.1557/jmr.2012.254Suche in Google Scholar
[17] E.Baudrin, S.Laruelle, S.Denis, M.Touboul, J.M.Tarascon: Solid State Ionics123 (1999) 139. 10.1016/S0167-2738(99)00096-XSuche in Google Scholar
[18] D.Hara, H.Ikuta, Y.Uchimoto, M.Wakihara: J. Mater. Chem.12 (2002) 2507. 10.1039/b201966cSuche in Google Scholar
[19] N.Spataru, B.V.Sarada, E.Papa, D.A.Tryk, A.Fujishima: Anal. Chem.73 (2001) 514. PMid: 11217755; 10.1021/ac000220vSuche in Google Scholar
[20] S.A.Wring, J.P.Hart, B.J.Birch: Analyst114 (1989) 1563. 10.1039/an9891401563Suche in Google Scholar
[21] J.Kulys, A.Drungiliene: Anal. Chim. Acta243 (1991) 287. 10.1016/S0003-2670(00)82572-6Suche in Google Scholar
[22] P.C.White, N.S.Lawrence, J.Davis, R.G.Compton: Anal. Chim. Acta447 (2001) 1. 10.1016/S0003-2670(01)01297-1Suche in Google Scholar
[23] L.Z.Pei, L.J.Yang, Y.Yang, C.Z.Yuan, C.G.Fan, Q.F.Zhang: Mater. Chem. Phys.130 (2011) 104. 10.1016/j.matchemphys.2011.06.002Suche in Google Scholar
[24] L.Z.Pei, Y.Yang, L.J.Yang, C.G.Fan, C.Z.Yuan, Q.F.Zhang: Solid State Commun.151 (2011) 1036. 10.1016/j.ssc.2011.04.017Suche in Google Scholar
[25] N.Wang, J.Ding, G.C.Li, H.R.Peng: Cryst. Res. Technol.45 (2010) 316. 10.1002/crat.200900501Suche in Google Scholar
[26] L.Z.Pei, Y.Yang, C.G.Fan, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Cryst. Eng. Comm.13 (2011) 4658. 10.1039/c1ce05070bSuche in Google Scholar
[27] L.Z.Pei, Y.Yang, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Mater. Charact.62 (2011) 555. 10.1016/j.matchar.2011.01.001Suche in Google Scholar
[28] D.S.Zheng, S.S.Sun, W.L.Fan, H.Y.Yu, C.H.Fan, G.X.Cao, Z.L.Yin, X.Y.Song: J. Phys. Chem. B109 (2005) 16439. 10.1021/jp0456234Suche in Google Scholar PubMed
[29] Y.D.Yin, Y.Lu, Y.G.Sun, Y.N.Xia: Nano Lett.2 (2002) 427. 10.1021/nl025508Suche in Google Scholar
[30] J.W.Wang, X.Wang, Q.Peng, Y.D.Li: Inorg. Chem.43 (2004) 7552. PMid: 15530107; 10.1021/ic030085fSuche in Google Scholar PubMed
[31] S.H.Tolbert, C.C.Landry, G.D.Stucky, B.F.Chmelka, P.Norby, J.C.Hanson, A.Monnier: Chem. Mater.13 (2001) 2247. 10.1021/cm0003727Suche in Google Scholar
[32] D.H.Chen, Z.Li, Y.Wan, X.J.Tu, Y.F.Shi, Z.X.Chen, W.Shen, C.Z.Yu, B.Tu, D.Y.Zhao: J. Mater. Chem.16 (2006) 1511. 10.1039/b517975kSuche in Google Scholar
[33] V.Singh, P.K.Sharma, P.Chauhan: Mater. Chem. Phys.121 (2010) 202. 10.1016/j.matchemphys.2010.01.019Suche in Google Scholar
[34] Y.Zou, D.S.Li, D.R.Yang: Nanoscale Res. Lett.6 (2011) 374. 10.1186/1556-276X-6-374Suche in Google Scholar
[35] B.Mayers, Y.Xia: Adv. Mater.14 (2002) 279. 10.1002/1521-4095(20020219)14:4<279::AID-ADMA279>3.0.CO;2-2Suche in Google Scholar
[36] Y.R.Ma, L.M.Qi, J.M.Ma, H.M.Cheng: Adv. Mater.16 (2004) 1023. 10.1002/adma.200305830Suche in Google Scholar
[37] X.Peng: Adv. Mater.15 (2003) 459. 10.1002/adma.200390107Suche in Google Scholar
[38] S.M.Lee, S.N.Cho, J.Cheon: Adv. Mater.15 (2003) 441. 10.1002/adma.200304588Suche in Google Scholar
[39] L.Guo, C.Liu, R.Wang, H.Xu, Z.Wu, S.Yang: J. Am. Chem. Soc.126 (2004) 4530. 10.1021/ja037604ySuche in Google Scholar
[40] L.J.Li, R.J.Nicholas, C.Y.Chen, R.C.Darton, S.C.Baker: Nanotechnology16 (2005) S202. 10.1088/0957-4484/16/1/007Suche in Google Scholar
[41] V.M.Burlakov: Phys. Rev. Lett.97 (2006) 155703. PMid: 17155338; 10.1103/PhysRevLett.97.155703Suche in Google Scholar
[42] W.C.Zhu, S.L.Zhu, L.Xiang: Cryst. Eng. Comm.11 (2009) 1910. 10.1039/b804956dSuche in Google Scholar
[43] I.Sapurina, J.Stejskal: Chem. Pap.63 (2009) 579. 10.2478/s11696-009-0061-3Suche in Google Scholar
[44] Y.Z.Fu, R.Yuan, D.P.Tang, Y.Q.Chai, L.Xu: Colloids Surf. B40 (2005) 61. PMid: 15620841; 10.1016/j.colsurfb.2004.10.022Suche in Google Scholar PubMed
[45] Y.P.Dong, L.Z.Pei, X.F.Chu, W.B.Zhang, Q.F.Zhang: Electrochim. Acta55 (2010) 5135. 10.1016/j.electacta.2009.11.042Suche in Google Scholar
[46] P.Dharmapandian, S.Rajesh, S.Rajasingh, A.Rajendran, C.Karunakaran: Sensor Actuat. B148 (2010) 17. 10.1016/j.snb.2010.04.023Suche in Google Scholar
[47] Z.Chen, H.Zheng, C.Lu, Y.Zu: Langmuir23 (2007) 10816. 10.1021/la062210gSuche in Google Scholar PubMed
[48] S.M.Chen, J.Y.Chen, R.Thangamuthu: Electroanalysis20 (2008) 1565. 10.1002/elan.200704036Suche in Google Scholar
[49] A.Salimi, R.Hallaj: Talanta66 (2005) 967. PMid: 18970079; 10.1016/j.talanta.2004.12.040Suche in Google Scholar PubMed
© 2013, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Critical sizes for coherent to semicoherent transition in precipitates
- Thixoformability evaluation of AA2011 and AA2014 alloys
- Joint strength of friction stir welded AISI 304 austenitic stainless steels
- Optimization of process parameters in explosive cladding of titanium/stainless steel 304L plates
- Optimization of the hot rolling parameters for evaluation of the formability of Nb-microalloyed steel sheet by using the Taguchi method
- XPS measurements of LDX 2101 duplex steel surface after magnetoelectropolishing
- Phase equilibria of the Al-Cr-Pr ternary system at 773 K
- Processing and mechanical characterisation of monolithic silicon carbide ceramic consolidated by spark plasma sintering (SPS)
- Effect of Mn doping on the microstructure and dielectric properties of BaHf0.1Ti0.9O3 ceramics
- Nano hydroxyapatite–polysulfone coating on Ti-6Al-4V substrate by electrospinning
- Photocatalytic and self-cleaning properties of SiO2/TiO2/SiO2 nanostructured thin film
- Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties
- Modification of the luminescent properties of ZnS nanoparticles by the adsorbed species
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Critical sizes for coherent to semicoherent transition in precipitates
- Thixoformability evaluation of AA2011 and AA2014 alloys
- Joint strength of friction stir welded AISI 304 austenitic stainless steels
- Optimization of process parameters in explosive cladding of titanium/stainless steel 304L plates
- Optimization of the hot rolling parameters for evaluation of the formability of Nb-microalloyed steel sheet by using the Taguchi method
- XPS measurements of LDX 2101 duplex steel surface after magnetoelectropolishing
- Phase equilibria of the Al-Cr-Pr ternary system at 773 K
- Processing and mechanical characterisation of monolithic silicon carbide ceramic consolidated by spark plasma sintering (SPS)
- Effect of Mn doping on the microstructure and dielectric properties of BaHf0.1Ti0.9O3 ceramics
- Nano hydroxyapatite–polysulfone coating on Ti-6Al-4V substrate by electrospinning
- Photocatalytic and self-cleaning properties of SiO2/TiO2/SiO2 nanostructured thin film
- Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties
- Modification of the luminescent properties of ZnS nanoparticles by the adsorbed species
- DGM News
- DGM News