Startseite Technik Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties

  • L. Z. Pei , Y. Q. Pei , Y. K. Xie , C. G. Fan und Q. F. Zhang
Veröffentlicht/Copyright: 30. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Manganese vanadate microtubes have been synthesized via a simple hydrothermal process using polyvinyl pyrrolidone as the surfactant. Scanning electron microscopy observation shows that polyvinyl pyrrolidone plays an essential role in the formation and phase transformation of the manganese vanadate microtubes. A polyvinyl pyrrolidone-assisted “Ostwald ripening” growth mechanism has been proposed to explain the formation process of the manganese vanadate microtubes. The electrochemical behavior of L-cysteine at the manganese vanadate microtube modified glassy carbon electrode has been analyzed. The manganese vanadate microtube modified glassy carbon electrode exhibits the performance for the electrochemical determination of L-cysteine with a detection limit of 9.2 μM and linear range of 0.01 – 2 mM.


* Correspondence address, L. Z. Pei, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, P. R. China, Tel.: +86555 2311570, Fax: +86555 2311570, E-mail:

References

[1] E.Andrukaitis: J. Power Sources68 (1997) 652. 10.1016/S0378-7753(96)02572-4Suche in Google Scholar

[2] T.Nakajima, M.Isobe, T.Tsuchiya, Y.Ueda, T.Manabe: Opt. Mater.32 (2010) 1618. 10.1016/j.optmat.2010.05.021Suche in Google Scholar

[3] Y.Sakurai, H.Ohtsuka, J.I.Yamaki: J. Electrochem. Soc.135 (1988) 32. 10.1149/1.2095582Suche in Google Scholar

[4] Y.Takeda, K.Itoh, R.Kanno, T.Icikawa, N.Imanishi, O.Yamamoto: J. Electrochem. Soc.138 (1991) 2566. 10.1149/1.2085588Suche in Google Scholar

[5] E.Andrukaitis, G.L.Torlone, I.R.Hill: J. Power Sources81–82 (1999) 651. 10.1016/S0378-7753(99)00094-4Suche in Google Scholar

[6] L.Tan, H.W.Liu: Inorg. Mater.46 (2010) 201. 10.1134/S0020168510020202Suche in Google Scholar

[7] F.Leroux, Y.Piffard, G.Ourvard, J.L.Mansot, D.Guyomard: Chem. Mater.11 (1999) 2948. 10.1021/cm991074gSuche in Google Scholar

[8] J.H.Liao, T.Drezen, F.Leroux, D.Guyomard, Y.Piffard: Eur. J. Solid State Inorg. Chem.33 (1996) 411.Suche in Google Scholar

[9] Y.Piffard, F.Leroux, D.Guyomard, J.L.Mansot, M.Tournoux: J. Power Sources68 (1997) 698. 10.1016/S0378-7753(96)02576-1Suche in Google Scholar

[10] S.S.Kim, H.Ikuta, M.Wakihara: Solid State Ionics139 (2001) 57. 10.1016/S0167-2738(00)00816-XSuche in Google Scholar

[11] M.Inagaki, T.Morishita, M.Hirano, V.Gupta, T.Nakajima: Solid State Ionics156 (2003) 275. 10.1016/S0167-2738(02)00679-3Suche in Google Scholar

[12] T.Morishita, H.Konno, Y.Izumi, M.Inagaki: Solid State Ionics177 (2006) 1347. 10.1016/j.ssi.2006.05.035Suche in Google Scholar

[13] T.Morishita, K.Nomura, T.Inamasu, M.Inagaki: Solid State Ionics176 (2005) 2235. 10.1016/j.ssi.2005.06.013Suche in Google Scholar

[14] Y.Liu, Y.T.Qian: Front. Chem. China3 (2008) 467. 10.1007/s11458-008-0061-9Suche in Google Scholar

[15] Y.Liu, Y.T.Qian: Front. Chem. China3 (2008) 275. 10.1007/s11458-008-0060-xSuche in Google Scholar

[16] L.Z.Pei, Y.Q.Pei, Y.K.Xie, C.Z.Yuan, D.K.Li, Q.F.Zhang: Mater. Res. in press (2012). 10.1557/jmr.2012.254Suche in Google Scholar

[17] E.Baudrin, S.Laruelle, S.Denis, M.Touboul, J.M.Tarascon: Solid State Ionics123 (1999) 139. 10.1016/S0167-2738(99)00096-XSuche in Google Scholar

[18] D.Hara, H.Ikuta, Y.Uchimoto, M.Wakihara: J. Mater. Chem.12 (2002) 2507. 10.1039/b201966cSuche in Google Scholar

[19] N.Spataru, B.V.Sarada, E.Papa, D.A.Tryk, A.Fujishima: Anal. Chem.73 (2001) 514. PMid: 11217755; 10.1021/ac000220vSuche in Google Scholar

[20] S.A.Wring, J.P.Hart, B.J.Birch: Analyst114 (1989) 1563. 10.1039/an9891401563Suche in Google Scholar

[21] J.Kulys, A.Drungiliene: Anal. Chim. Acta243 (1991) 287. 10.1016/S0003-2670(00)82572-6Suche in Google Scholar

[22] P.C.White, N.S.Lawrence, J.Davis, R.G.Compton: Anal. Chim. Acta447 (2001) 1. 10.1016/S0003-2670(01)01297-1Suche in Google Scholar

[23] L.Z.Pei, L.J.Yang, Y.Yang, C.Z.Yuan, C.G.Fan, Q.F.Zhang: Mater. Chem. Phys.130 (2011) 104. 10.1016/j.matchemphys.2011.06.002Suche in Google Scholar

[24] L.Z.Pei, Y.Yang, L.J.Yang, C.G.Fan, C.Z.Yuan, Q.F.Zhang: Solid State Commun.151 (2011) 1036. 10.1016/j.ssc.2011.04.017Suche in Google Scholar

[25] N.Wang, J.Ding, G.C.Li, H.R.Peng: Cryst. Res. Technol.45 (2010) 316. 10.1002/crat.200900501Suche in Google Scholar

[26] L.Z.Pei, Y.Yang, C.G.Fan, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Cryst. Eng. Comm.13 (2011) 4658. 10.1039/c1ce05070bSuche in Google Scholar

[27] L.Z.Pei, Y.Yang, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Mater. Charact.62 (2011) 555. 10.1016/j.matchar.2011.01.001Suche in Google Scholar

[28] D.S.Zheng, S.S.Sun, W.L.Fan, H.Y.Yu, C.H.Fan, G.X.Cao, Z.L.Yin, X.Y.Song: J. Phys. Chem. B109 (2005) 16439. 10.1021/jp0456234Suche in Google Scholar PubMed

[29] Y.D.Yin, Y.Lu, Y.G.Sun, Y.N.Xia: Nano Lett.2 (2002) 427. 10.1021/nl025508Suche in Google Scholar

[30] J.W.Wang, X.Wang, Q.Peng, Y.D.Li: Inorg. Chem.43 (2004) 7552. PMid: 15530107; 10.1021/ic030085fSuche in Google Scholar PubMed

[31] S.H.Tolbert, C.C.Landry, G.D.Stucky, B.F.Chmelka, P.Norby, J.C.Hanson, A.Monnier: Chem. Mater.13 (2001) 2247. 10.1021/cm0003727Suche in Google Scholar

[32] D.H.Chen, Z.Li, Y.Wan, X.J.Tu, Y.F.Shi, Z.X.Chen, W.Shen, C.Z.Yu, B.Tu, D.Y.Zhao: J. Mater. Chem.16 (2006) 1511. 10.1039/b517975kSuche in Google Scholar

[33] V.Singh, P.K.Sharma, P.Chauhan: Mater. Chem. Phys.121 (2010) 202. 10.1016/j.matchemphys.2010.01.019Suche in Google Scholar

[34] Y.Zou, D.S.Li, D.R.Yang: Nanoscale Res. Lett.6 (2011) 374. 10.1186/1556-276X-6-374Suche in Google Scholar

[35] B.Mayers, Y.Xia: Adv. Mater.14 (2002) 279. 10.1002/1521-4095(20020219)14:4<279::AID-ADMA279>3.0.CO;2-2Suche in Google Scholar

[36] Y.R.Ma, L.M.Qi, J.M.Ma, H.M.Cheng: Adv. Mater.16 (2004) 1023. 10.1002/adma.200305830Suche in Google Scholar

[37] X.Peng: Adv. Mater.15 (2003) 459. 10.1002/adma.200390107Suche in Google Scholar

[38] S.M.Lee, S.N.Cho, J.Cheon: Adv. Mater.15 (2003) 441. 10.1002/adma.200304588Suche in Google Scholar

[39] L.Guo, C.Liu, R.Wang, H.Xu, Z.Wu, S.Yang: J. Am. Chem. Soc.126 (2004) 4530. 10.1021/ja037604ySuche in Google Scholar

[40] L.J.Li, R.J.Nicholas, C.Y.Chen, R.C.Darton, S.C.Baker: Nanotechnology16 (2005) S202. 10.1088/0957-4484/16/1/007Suche in Google Scholar

[41] V.M.Burlakov: Phys. Rev. Lett.97 (2006) 155703. PMid: 17155338; 10.1103/PhysRevLett.97.155703Suche in Google Scholar

[42] W.C.Zhu, S.L.Zhu, L.Xiang: Cryst. Eng. Comm.11 (2009) 1910. 10.1039/b804956dSuche in Google Scholar

[43] I.Sapurina, J.Stejskal: Chem. Pap.63 (2009) 579. 10.2478/s11696-009-0061-3Suche in Google Scholar

[44] Y.Z.Fu, R.Yuan, D.P.Tang, Y.Q.Chai, L.Xu: Colloids Surf. B40 (2005) 61. PMid: 15620841; 10.1016/j.colsurfb.2004.10.022Suche in Google Scholar PubMed

[45] Y.P.Dong, L.Z.Pei, X.F.Chu, W.B.Zhang, Q.F.Zhang: Electrochim. Acta55 (2010) 5135. 10.1016/j.electacta.2009.11.042Suche in Google Scholar

[46] P.Dharmapandian, S.Rajesh, S.Rajasingh, A.Rajendran, C.Karunakaran: Sensor Actuat. B148 (2010) 17. 10.1016/j.snb.2010.04.023Suche in Google Scholar

[47] Z.Chen, H.Zheng, C.Lu, Y.Zu: Langmuir23 (2007) 10816. 10.1021/la062210gSuche in Google Scholar PubMed

[48] S.M.Chen, J.Y.Chen, R.Thangamuthu: Electroanalysis20 (2008) 1565. 10.1002/elan.200704036Suche in Google Scholar

[49] A.Salimi, R.Hallaj: Talanta66 (2005) 967. PMid: 18970079; 10.1016/j.talanta.2004.12.040Suche in Google Scholar PubMed

Received: 2012-11-11
Accepted: 2013-7-9
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110978/html
Button zum nach oben scrollen