Hot compression deformation of an Mg–2.54Nd–0.26Zn–0.32Zr alloy
-
H. H. Liu
, Z. L. Ning , F. Y. Cao , J. F. Du und J. F. Sun
Abstract
The hot compression deformation of an Mg–2.54Nd–0.26Zn–0.32Zr cast alloy was investigated in the 25–400°C temperature range at initial strain rates from 10−4 s−1 to 10−2 s−1. It was found that strain rate has little effect on true stress when the material was compressed below 250°C. Above this temperature, high strain rates resulted in an increased true stress. The average strain rate sensitivity exponent at higher temperature (300–400°C) was determined to be 0.24 and the calculated activation energy was 185 kJ · mol−1, which is higher than that of lattice self diffusion of pure Mg. The constitutive equation was established and the Zener-Hollomon parameter was calculated as a function of peak stress. The microstructure of a sample tested at 300°C was analyzed by optical microscopy.
References
[1] C.J.Boehlert, K.Knittel: Mater. Sci. Eng. A417 (2006) 315. 10.1016/j.msea.2005.11.006Suche in Google Scholar
[2] J.G.Wang, L.M.Hsiung, T.G.Nieh, M.Mabuchi: Mater. Sci. Eng. A315 (2001) 81. 10.1016/S0921-5093(01)01209-6Suche in Google Scholar
[3] B.Smola, I.Stulikova, J.Pelcova, B.L.Mordike: J. Alloy Comp.378 (2004) 196. 10.1016/j.jallcom.2003.10.099Suche in Google Scholar
[4] J.Koike, T.Kobayashi, T.Mukai, H.Watanabe, M.Suzuki, K.Maruyama, K.Higashi: Acta Mater.51 (2003) 2055. 10.1016/S1359-6454(03)00005-3Suche in Google Scholar
[5] Z.L.Ning, H.B.Wang, W.Z.Liang: China Rare Earth Soc.22 (2004) 134.Suche in Google Scholar
[6] F.Nie, B.C.Muddle: Acta Mater.48 (2000) 1691. 10.1016/S1359-6454(00)00013-6Suche in Google Scholar
[7] A.Saccone, D.Maccio, S.Delfino, R.Ferro: J. Alloy. Compd.220 (1995) 161. 10.1016/0925-8388(94)06023-1Suche in Google Scholar
[8] Z.Trojanova, P.Lukac: J. Mater. Proc. Tech.162–163 (2005) 416. 10.1016/j.jmatprotec.2005.02.024Suche in Google Scholar
[9] H.Beladi, M.R.Barnett: Mater. Sci. Eng. A452–453 (2007) 306. 10.1016/j.msea.2006.10.125Suche in Google Scholar
[10] M.Y.Zheng, S.W.Xu, X.G.Qiao: Mater. Sci. Eng. A483–484 (2008) 564. 10.1016/j.msea.2006.09.160Suche in Google Scholar
[11] D.J.Li, Q.D.Wang, J.Jblandin: Mater. Sci. Eng. A526 (2009) 150. 10.1016/j.msea.2009.07.015Suche in Google Scholar
[12] M.Guden, O.Akil, A.Tasdemirci: Mater. Sci. Eng. A425 (2006) 145. 10.1016/j.msea.2006.03.028Suche in Google Scholar
[13] H.Watanabe, T.Mukai, M.Mabuchi, K.Higashi: Scripta Mater.41 (1999) 209. 10.1016/S1359-6462(99)00155-4Suche in Google Scholar
[14] S.Spigrelli, D.Cicarelli, E.Evangelista: Mater. Lett.58 (2004) 460. 10.1016/S0167-577X(03)00525-1Suche in Google Scholar
[15] M.G.Yan: China Aeronautical Materials Handbook3 (2002) 534. Beijing: China Standards Press.Suche in Google Scholar
[16] C.J.Bettles, C.T.Forwood, D.S.Jones, J.R.Griffiths, M.T.Frost, St. D.H.John, M.Qian, G.L.Song, J.F.Nie: AMC-SCI: Magnesium Technology. Ed. H.Kaplan, San Diego, TMS, USA (2003) 223.Suche in Google Scholar
[17] E.Aghion, B.Bronfin, D.Eliezer, F. Von.Buch: Mater. Sci. Forum.419–422 (2003) 407. 10.4028/www.scientific.net/MSF.419-422.407Suche in Google Scholar
[18] C.J.Bettles, M.A.Gibson, S.M.Zhu: Mater. Sci. Eng. A506 (2009) 6. 10.1016/j.msea.2008.11.004Suche in Google Scholar
[19] X.W.Zheng, J.Dong, D.D.Yin, W.C.Liu, F.H.Wang, L.Jin, W.J.Ding: Mater. Sci. Eng. A527 (2010) 3690. 10.1016/j.msea.2010.03.002Suche in Google Scholar
[20] Z.L.Ning, F.Y.Cao, H.H.Liu, J.F.Sun, J.F.Du: Rare Met. Mater. Eng.38 (2009) 1997.Suche in Google Scholar
[21] Z.L.Ning, G.J.Wang, F.Y.Cao, J.F.Sun: J. Mater. Sci.44 (2009) 4264. 10.1007/s10853-009-3420-0Suche in Google Scholar
[22] S.Spigarelli, M.El Mehtedi, M.Cabibbo, E.Evangelista, J.Kaneko, A.Jäger, V.Gartnerova: Mater. Sci. Eng. A462 (2007) 197. 10.1016/j.msea.2006.03.155Suche in Google Scholar
[23] V.A.Blokhina, G.G.Soloveva, N.M.Tikhova: Met. Sci. Heat Treat.9 (1968) 553. 10.1007/BF00654265Suche in Google Scholar
[24] N.M.Tikhova, V.A.Blokhina, A.P.Antipova, T.P.Vasileva: Met. Sci. Heat Treat.13 (1971) 887. 10.1007/BF00713834Suche in Google Scholar
[25] Y.Chino, M.Kado, M.Mabuchi: Acta Mater.56 (2008) 387. 10.1016/j.actamat.2007.09.002Suche in Google Scholar
[26] J.G.Wang, L.M.Hsiung, T.G.Nieh, M.Mabuchi: Mater. Sci. Eng. A315 (2001) 81. 10.1016/S0921–5093(01)01209–6Suche in Google Scholar
[27] T.G.Landon: Mater. Sci. Eng. A283 (2000) 266. 10.1016/S0921-5093(00)00624-9Suche in Google Scholar
[28] T.Reinikainen, J.Kivilahti: Metall. Mater. Trans.30A (1999) 123. 10.1007/s11661-999-0200-zSuche in Google Scholar
[29] W.Zapata-Solvas, D.Gomez-Garcia, C.Garcia-Ganan, A.Dominguez-Rodriguez: J. Eur. Ceram. Soc.27 (2007) 3325. 10.1016/j.jeurceramsoc.2007.02.183Suche in Google Scholar
[30] J.A.del Valle, Q.A.Ruano: Acta Mater.55 (2007) 455. 10.1016/j.actamat.2006.08.039Suche in Google Scholar
© 2013, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Martensite–austenite transformation kinetics of high Cr ferritic heat-resistant steel
- Ageing texture of hot rolled and solution treated Ti–Nb alloys
- Artificial aging of thixocast ZA27 alloy and particulate ZA27/SiCp composites
- Low cycle fatigue behavior under asymmetric loading of two AZ31B magnesium alloys with different microstructures and textures
- Mechanical properties of aluminum extruded via the KOBO method with direct and lateral outflow
- Hot compression deformation of an Mg–2.54Nd–0.26Zn–0.32Zr alloy
- Evaluation of the sliding performance of polyamide, poly-oxy-methylene and their composites
- Corrosion behaviour of AISI 204Cu and AISI 304 stainless steels in simulated pore solution
- Comparing the corrosion behavior of nanograined and coarse-grained interstitial free steels
- Electrochemical investigation of the effect of different laser surface treatments on Hastelloy G alloy
- Influence of sputtering gas pressure on properties of transparent conducting Si-doped zinc oxide films
- Cu2SnS3 absorber thin films prepared via successive ionic layer adsorption and reaction method
- Nano preparation of Dy3+ substituted ceria via urea-formaldehyde gel combustion route
- Short Communications
- Preparation of ZrB2-based nanocomposites with limited grain growth by means of low-temperature hot-pressing using Cu additive
- Combustion synthesis of Ti2SC
- People
- Prof. Dr. Tomaž Kosmač
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Martensite–austenite transformation kinetics of high Cr ferritic heat-resistant steel
- Ageing texture of hot rolled and solution treated Ti–Nb alloys
- Artificial aging of thixocast ZA27 alloy and particulate ZA27/SiCp composites
- Low cycle fatigue behavior under asymmetric loading of two AZ31B magnesium alloys with different microstructures and textures
- Mechanical properties of aluminum extruded via the KOBO method with direct and lateral outflow
- Hot compression deformation of an Mg–2.54Nd–0.26Zn–0.32Zr alloy
- Evaluation of the sliding performance of polyamide, poly-oxy-methylene and their composites
- Corrosion behaviour of AISI 204Cu and AISI 304 stainless steels in simulated pore solution
- Comparing the corrosion behavior of nanograined and coarse-grained interstitial free steels
- Electrochemical investigation of the effect of different laser surface treatments on Hastelloy G alloy
- Influence of sputtering gas pressure on properties of transparent conducting Si-doped zinc oxide films
- Cu2SnS3 absorber thin films prepared via successive ionic layer adsorption and reaction method
- Nano preparation of Dy3+ substituted ceria via urea-formaldehyde gel combustion route
- Short Communications
- Preparation of ZrB2-based nanocomposites with limited grain growth by means of low-temperature hot-pressing using Cu additive
- Combustion synthesis of Ti2SC
- People
- Prof. Dr. Tomaž Kosmač
- DGM News
- DGM News