Cu2SnS3 absorber thin films prepared via successive ionic layer adsorption and reaction method
-
Süleyman Kahraman
, Samed Çetinkaya , Hacı Mustafa Çakmak , Hacı Ali Çetinkara and Hüsnü Salih Güder
Abstract
In this paper, we report the production of Cu2SnS3 thin films with high phase purity via successive ionic layer adsorption and reaction method on soda lime glass substrates. Structural, morphological, compositional, optical and electrical investigations were carried out. The X-ray diffraction patterns of the samples matched very well with the reference pattern and proved the polycrystalline nature of the films. As a secondary phase, one weak peak indicating covallite Cu2–xS phase was observed in the pattern of the sample deposited by using equimolar Cu and Sn. The surface morphologies of the films were found to be continuous and composed of homogeneously distributed large grains. From the reflectance and transmittance data, the optical absorption coefficient values of the films were found to be about 104 cm−1 and the films were found to be almost opaque in the wavelengths from 200 to 600 nm with a small reflectivity of about 10%. Band gap values of the films decreased from 1.45 to 1.35 eV with decreasing Cu content. Electrical characterization showed that the films were p-type semiconductor. Two different impurity levels for each film were found via resistivity-temperature characteristics.
References
[1] S.Emin, S.P.Singh, L.Han, N.Satoh, A.Islam: Sol. Energy85 (2011) 1264. 10.1016/j.solener.2011.02.005Search in Google Scholar
[2] S.Blöb, M.Jansen: Z. Naturforsch.58b (2002) 1075.Search in Google Scholar
[3] X.Liang, Q.Cai, W.Xiang, Z.Chen, J.Zhong, Y.Wang, M.Shao, Z.Li: J. Mater. Sci. Technol. In press,. 10.1016/j.jmst.2012.12.011.Search in Google Scholar
[4] M.Ristov, G.Sinadinovski, M.Mitreski, M.Ristova: Sol. Energy Mater. Sol. Cells69 (2001) 17. 10.1016/S0927-0248(00)00355-XSearch in Google Scholar
[5] Z.Su, K.Sun, Z.Han, F.Liu, Y.Lai, J.Li, Y.Liu: J. Mater. Chem.22 (2012) 16346. 10.1039/c1jm13338aSearch in Google Scholar
[6] D.M.Berg, R.Djemour, L.Gütay, G.Zoppi, S.Siebentritt, P.J.Dale: Thin Solid Films520 (2012) 6291. 10.1016/j.tsf.2012.05.085Search in Google Scholar
[7] D.Avellaneda, M.T.S.Nair, P.K.Nai: J. Electrochem. Soc.157 (2010) D346. 10.1149/1.3384660Search in Google Scholar
[8] T.A.Kuku, O.A.Fakolujo: Sol. Energy Mater.16 (1987) 199. 10.1016/0165-1633(87)90019-0Search in Google Scholar
[9] M.Bouaziz, M.Amlouk, S.Belgacem: Thin Solid Films517 (2009) 2527. 10.1016/j.tsf.2008.11.039Search in Google Scholar
[10] D.Wu, C.R.Knowles, L.L.Y.Chang: Miner. Mag.50 (1986) 323. 10.1180/minmag.1986.050.356.20Search in Google Scholar
[11] X.Chen, H.Wada, A.Sato, M.Mieno: J. Solid State Chem.139 (1998) 144. 10.1006/jssc.1998.7822Search in Google Scholar
[12] M.OnodaX.-A.Chen, A.Sato, H.Wada: Mater. Res. Bull.35 (2000) 1563. 10.1016/S0025-5408(00)00347-0Search in Google Scholar
[13] M.Bouaziz, J.Ouerfelli, S.Srivastava, J.Bernde, M.Amlouk: Vacuum85 (2011) 783. 10.1016/j.vacuum.2010.10.001Search in Google Scholar
[14] P.Fernandes, P.Salome, A.Cunha: J. Phys. D: Appl. Phys.43 (2010) 215403. 10.1088/0022-3727/43/21/215403Search in Google Scholar
[15] H.Guan, H.Shen, C.Gao, X.He: J. Mater. Sci-Mater. El.10.1007/s10854-012-0960-x).Search in Google Scholar
[16] P.A.Fernandes, P.M.P.Salome, A.F.Cunha: J. Alloy. Compd.509 (2011) 7600. 10.1016/j.jallcom.2011.04.097Search in Google Scholar
[17] Q.Chen, X.Dou, Y.Ni, S.Cheng, S.Zhuang: J. Colloid Interface Sci.376 (2012) 327. 10.1016/j.jcis.2012.03.015Search in Google Scholar PubMed
[18] B.Li, Y.Xie, J.Huang, Y.Qian: J. Solid State Chem.153 (2000) 170. 10.1006/jssc.2000.8772Search in Google Scholar
[19] A.Amlouk, K.Boubaker, M.Amlouk: Vacuum85 (2010) 60. 10.1016/j.vacuum.2010.04.002Search in Google Scholar
[20] C.X.Li, J.Guo, D.Y.Jiang, Q.Li: Adv. Mater. Res.624 (2012) 59. 10.4028/www.scientific.net/AMR.624.1Search in Google Scholar
[21] I.Oja, A.Belaidi, L.Dloczik, M.-Ch.Lux-Steiner, T.Dittrich: Semicond. Sci. Technol.21 (2006) 520. 10.1088/0268-1242/21/4/018Search in Google Scholar
[22] H.Katagiri, N.Sasaguchi, S.Hando, S.Hoshino, J.Ohashi, T.Yokota: Sol. Energy Mater. Sol. Cells49 (1997) 407. 10.1016/S0927-0248(97)00119-0Search in Google Scholar
[23] T.Kobayashi, K.Jimbo, K.Tsuchida, S.Shinoda, T.Oyanagi, H.Katagiri: Jpn. J. Appl. Phys.44 (2005) 783. 10.1143/JJAP.44.1027Search in Google Scholar
[24] H.Katagiri: Thin Solid Films480–481 (2005) 426.10.1016/j.tsf.2004.11.024Search in Google Scholar
[25] H.Katagiri, K.Jimbo, S.Yamada, T.Kamimura, W.S.Maw, T.Fukano, T.Ito, T.Motohiro: Appl. Phys. Exp.1 (2008) 041201–1. 10.1143/APEX.1.041201Search in Google Scholar
[26] H.Katagiri, K.Jimbo, W.S.Maw, K.Oishi, M.Yamazaki, H.Araki, A.Takeuchi: Thin Solid Films517 (2009) 2455. 10.1016/j.tsf.2008.11.002Search in Google Scholar
[27] S.Chen, X.G.Gong, A.Walsh, S.Wei: Appl. Phys. Lett.96 (2010) 021902. 10.1063/1.3275796Search in Google Scholar
[28] G.Knuyt, C.Quaeyhaegens, J.D.Haen, L.M.Stals: Phys. Status Solidi B195 (1996) 179. 10.1002/pssb.2221950121Search in Google Scholar
[29] H.P.Klug, L.Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York (1974).Search in Google Scholar
[30] A.Suresh, K.Chatterjee, V.K.Sharma, S.Ganguly, KarguptaK., D.Banerjee: J. Elect. Mater.38 (2009) 449. 10.1007/s11664-008-0635-9Search in Google Scholar
[31] J.Tauc: Mater. Res. Bull.5 (1970) 721. 10.1016/0025-5408(70)90112-1Search in Google Scholar
[32] S.Sönmezoğlu, A.Arslan, T.Serin, N.Serin: Phys. Scr.84 (2011) 065602. 10.1088/0031-8949/84/06/065602Search in Google Scholar
[33] M.Bouaziz, M.Amlouk, S.Belgacem: Thin Solid Films517 (2009) 2527. 10.1016/j.tsf.2008.11.039Search in Google Scholar
[34] M.Onoda, X.-A.Chen, A.Sato, H.Wada: Mater. Res. Bull35 (2000) 1563. 10.1016/S0025-5408(00)00347-0Search in Google Scholar
[35] D.M.Berg, R.Djemour, L.Gütay, S.Siebentritt, P.J.Dale, X.Fontane, V.Izquierdo-Roca, A.Perez-Rodriguez: Appl. Phys. Lett.100 (2012) 192103. 10.1063/1.4712623Search in Google Scholar
[36] A.C.Rastogi, S.Salkalachen: Thin Solid Films97 (1982) 191. 10.1016/0040-6090(82)90228-0Search in Google Scholar
[37] K.Seeger: Semiconductor Physics, Springer, Berlin/Wien/New York (1973).10.1007/978-3-7091-4111-3Search in Google Scholar
[38] B.Pejova, A.Tanusevski, I.Grozdanov: J. Solid State Chem.178 (2005) 1786. 10.1016/j.jssc.2005.03.017Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Martensite–austenite transformation kinetics of high Cr ferritic heat-resistant steel
- Ageing texture of hot rolled and solution treated Ti–Nb alloys
- Artificial aging of thixocast ZA27 alloy and particulate ZA27/SiCp composites
- Low cycle fatigue behavior under asymmetric loading of two AZ31B magnesium alloys with different microstructures and textures
- Mechanical properties of aluminum extruded via the KOBO method with direct and lateral outflow
- Hot compression deformation of an Mg–2.54Nd–0.26Zn–0.32Zr alloy
- Evaluation of the sliding performance of polyamide, poly-oxy-methylene and their composites
- Corrosion behaviour of AISI 204Cu and AISI 304 stainless steels in simulated pore solution
- Comparing the corrosion behavior of nanograined and coarse-grained interstitial free steels
- Electrochemical investigation of the effect of different laser surface treatments on Hastelloy G alloy
- Influence of sputtering gas pressure on properties of transparent conducting Si-doped zinc oxide films
- Cu2SnS3 absorber thin films prepared via successive ionic layer adsorption and reaction method
- Nano preparation of Dy3+ substituted ceria via urea-formaldehyde gel combustion route
- Short Communications
- Preparation of ZrB2-based nanocomposites with limited grain growth by means of low-temperature hot-pressing using Cu additive
- Combustion synthesis of Ti2SC
- People
- Prof. Dr. Tomaž Kosmač
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Martensite–austenite transformation kinetics of high Cr ferritic heat-resistant steel
- Ageing texture of hot rolled and solution treated Ti–Nb alloys
- Artificial aging of thixocast ZA27 alloy and particulate ZA27/SiCp composites
- Low cycle fatigue behavior under asymmetric loading of two AZ31B magnesium alloys with different microstructures and textures
- Mechanical properties of aluminum extruded via the KOBO method with direct and lateral outflow
- Hot compression deformation of an Mg–2.54Nd–0.26Zn–0.32Zr alloy
- Evaluation of the sliding performance of polyamide, poly-oxy-methylene and their composites
- Corrosion behaviour of AISI 204Cu and AISI 304 stainless steels in simulated pore solution
- Comparing the corrosion behavior of nanograined and coarse-grained interstitial free steels
- Electrochemical investigation of the effect of different laser surface treatments on Hastelloy G alloy
- Influence of sputtering gas pressure on properties of transparent conducting Si-doped zinc oxide films
- Cu2SnS3 absorber thin films prepared via successive ionic layer adsorption and reaction method
- Nano preparation of Dy3+ substituted ceria via urea-formaldehyde gel combustion route
- Short Communications
- Preparation of ZrB2-based nanocomposites with limited grain growth by means of low-temperature hot-pressing using Cu additive
- Combustion synthesis of Ti2SC
- People
- Prof. Dr. Tomaž Kosmač
- DGM News
- DGM News