Startseite Preparation of ZrB2-based nanocomposites with limited grain growth by means of low-temperature hot-pressing using Cu additive
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation of ZrB2-based nanocomposites with limited grain growth by means of low-temperature hot-pressing using Cu additive

  • Rujie He , Xinghong Zhang , Ping Hu und Wenbo Han
Veröffentlicht/Copyright: 18. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The purpose of the present study is to prepare ZrB2-based nanocomposites with limited or no obvious grain growth. For ZrB2 nanoparticles, the densification on-set temperature was about 1300°C, whereas the obvious grain growth on-set temperature for ZrB2 nanoparticles was found to be about 1500°C. Therefore, there was a temperature “window” 1300–1500°C where ZrB2 nanoparticles could be densified with limited or no grain growth. In this study, densification of ZrB2-based nanocomposite was finally realized by means of low-temperature hot-pressing at 1450°C for 60 min under a uniaxial pressure of 30 MPa using Cu as a sintering additive. After hot-pressing, the grain growth of ZrB2 nanoparticles was greatly suppressed, and the average grain size for ZrB2 was only 310 nm. The microstructure and mechanical properties were examined, and the flexural strength and fracture toughness were 472.8 ± 36.4 MPa and 12.4 ± 0.5 MPa · m1/2, respectively. We believe this paper can lay the foundation for the preparation of ZrB2-based nanocomposites.


* Correspondence address, Rujie He, National Key Laboratory of Science and Technology on Advanced, Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, P. R. China, Tel./Fax: +86-451-86403016, E-mail:

References

[1] Q.Liu, W.B.Han, X.H.ZhangS.Wang, J.C.Han: Mater. Lett.63 (2009) 1323. 10.1016/j.matlet.2008.09.029Suche in Google Scholar

[2] S.M.Zhang, S.Wang, W.Li, Y.LZhu, Z.H.Chen: Mater. Lett.65 (2011) 2910. 10.1016/j.matlet.2010.09.074Suche in Google Scholar

[3] S.Q.Guo, T.Nishimura, T.Mizuguchi, Y.Kagawa: J. Eur. Ceram. Soc.28 (2008) 1891. 10.1016/j.jeurceramsoc.2007.08.009Suche in Google Scholar

[4] F.Monterverde, R.Savino, M.D.S.Fumo, A.D.Maso: J. Eur. Ceram. Soc.30 (2010) 2313. 10.1016/j.jeurceramsoc.2010.01.029Suche in Google Scholar

[5] X.H.Zhang, P.Hu, J.C.Han, S.H.Meng: Comp. Sci. Technol.68 (2008) 1718. 10.1016/j.compscitech.2007.03.012Suche in Google Scholar

[6] B.W.Sheldon, W.A.Curtin: Nat. Mater.3 (2004) 505. 10.1038/nmat1174Suche in Google Scholar PubMed

[7] K.Lu: Int. Mater. Rev.53 (2008) 21. 10.1179/174328008X254358Suche in Google Scholar

[8] F.Monteverde, A.Bellosi, S.Guicciardi: J. Eur. Ceram. Soc.22 (2000) 279. 10.1016/S0955-2219(01)00284-9Suche in Google Scholar

[9] X.Sun, W.B.Han, Q.Liu, P.Hu, C.Q.Hong: Mater. Des.31 (2010) 4427. 10.1016/j.matdes.2009.06.046Suche in Google Scholar

[10] W.G.Fahrenholtz, G.E.Hilma, I.G.Talmy, J.A.Zaykoski: J. Am. Ceram. Soc.90 (2007) 1347. 10.1111/j.1551-2916.2006.01329.xSuche in Google Scholar

[11] X.H.Zhang, Y.Hou, P.Hu, W.B.Han, J.T.Luo: Ceram. Int.38 (2012) 2733. 10.1016/j.ceramint.2011.04.048Suche in Google Scholar

[12] F.Monteverde, S.Guicciardi, A.Bellosi: Mater. Sci. Eng. A346 (2003) 310. 10.1016/S0921-5093(02)00520-8Suche in Google Scholar

Received: 2012-8-29
Accepted: 2013-3-25
Published Online: 2013-10-18
Published in Print: 2013-10-10

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110948/pdf?lang=de
Button zum nach oben scrollen