Startseite Development of an atomic mobility database for disordered and ordered fcc phases in multicomponent Al alloys: focusing on binary systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Development of an atomic mobility database for disordered and ordered fcc phases in multicomponent Al alloys: focusing on binary systems

  • Dandan Liu , Lijun Zhang , Yong Du , Senlin Cui , Wanqi Jie und Zhanpeng Jin
Veröffentlicht/Copyright: 17. August 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An atomic mobility database for binary disordered and ordered fcc phases in multicomponent Al-Cu-Fe–Mg-Mn–Ni–Si–Zn alloys was established based on a critical review of diffusion data in various constituent binary systems via the DICTRA (DIffusion Controlled TRAnsformation) software package. The mobility parameters for self-diffusion in the metastable fcc structure were determined through a semi-empirical method. An effective strategy, which takes the homogeneity range and defect concentration into account, was used to optimize the atomic mobilities of L12 phase in the Fe–Ni system. Comprehensive comparisons between various calculated and measured diffusivities show that most of the experimental data can be well reproduced by the presently obtained atomic mobilities. The general agreement between the model-predicted concentration profiles and the experimental ones in the Al-Ni–Si, Al-Mg-Zn and Cu-Mn–Ni–Zn diffusion couples validates the potential application of the present atomic mobility database to predict the concentration profiles in higher order systems. An 8-elemental diffusion couple was also simulated with the present database.


* Correspondence address, Professor Dr. Yong Du, State Key Laboratory of Powder Metallurgy, Central South University Changsha Hunan 410083, P.R. China, Tel.: +86 731 88836 213, Fax: +86 731 88710 855, E-mail:

References

[1] A.Borgenstam, A.Engström, L.Höglund, J.Ågren: J. Phase Equilib.21 (2000) 269. 10.1361/105497100770340057Suche in Google Scholar

[2] J.O.Andersson, J.Ågren: J. Appl. Phys.72 (1992) 1350. 10.1063/1.351745Suche in Google Scholar

[3] L.J.Zhang, Y.Du, I.Steinbach, Q.Chen, B.Y.Huang: Acta Mater.58 (2010) 3664. 10.1016/j.actamat.2010.03.002Suche in Google Scholar

[4] L.Höglund, J.Ågren: Acta Mater.49 (2001) 1311. 10.1016/S1359-6454(01)00054-4Suche in Google Scholar

[5] H.Strandlund, H.Larsson: Acta Mater.52 (2004) 4695. 10.1016/j.actamat.2004.06.039Suche in Google Scholar

[6] N.Dupin, B.Sundman: Scand. J. Metall.30 (2001) 184. 10.1034/j.1600-0692.2001.300309.xSuche in Google Scholar

[7] S.L.Shang, H.Zhang, S.Ganeshan, Z.-K.Liu: Jom.60 (2008) 45. 10.1007/s11837-008-0165-1Suche in Google Scholar

[8] Y.Du, S.H.Liu, L.J.Zhang, H.H.Xu, D.D.Zhao, A.J.Wang, L.C.Zhou: CALPHAD35 (2011) 427. 10.1016/j.calphad.2011.06.007Suche in Google Scholar

[9] J.O.Andersson, T.Helander, L.Höglund, P.Shi, B.Sundman: CALPHAD26 (2002) 273. 10.1016/S0364-5916(02)00037-8Suche in Google Scholar

[10] C.E.Campbell, W.J.Boettinger, U.R.Kattner: Acta Mater.50 (2002) 775. 10.1016/S1359-6454(01)00383-4Suche in Google Scholar

[11] D.D.Liu, L.J.Zhang, Y.Du, H.H.Xu, S.H.Liu, L.B.Liu: CALPHAD33 (2009) 761. 10.1016/j.calphad.2009.10.004Suche in Google Scholar

[12] H.Chang, L.Huang, J.J.Yao, Y.W.Cui, J.S.Li, L.Zhou: CALPHAD34 (2010) 68. 10.1016/j.calphad.2009.12.002Suche in Google Scholar

[13] W.B.Zhang, Y.Du, D.D.Zhao, L.J.Zhang, H.H.Xu, S.H.Liu, Y.W.Li, S.Q.Liang: CALPHAD34 (2010) 286. 10.1016/j.calphad.2010.05.003Suche in Google Scholar

[14] L.J.Zhang, Y.Du, Q.Chen, I.Steinbach, B.Y.Huang: Int. J. Mater. Res.101 (2010) 1461. 10.3139/146.110428Suche in Google Scholar

[15] S.L.Cui, Y.Du, L.J.Zhang, Y.J.Liu, H.H.Xu: CALPHAD34 (2010) 446. 10.1016/j.calphad.2010.08.002Suche in Google Scholar

[16] Y.J.Liu, J.Wang, Y.Du, L.J.Zhang, D.Liang: CALPHAD34 (2010) 253. 10.1016/j.calphad.2010.04.002Suche in Google Scholar

[17] W.B.Zhang, Y.Du, L.J.Zhang, H.H.Xu, S.H.Liu, L.Chen: CALPHAD35 (2011) 367. 10.1016/j.calphad.2011.04.009Suche in Google Scholar

[18] S.L.Cui, L.J.Zhang, Y.Du, D.D.Zhao, H.H.Xu, W.B.Zhang, S.H.Liu: CALPHAD35 (2011) 231. 10.1016/j.calphad.2010.10.002Suche in Google Scholar

[19] E.Kozeschnik: Z. Metallkd.91 (2000) 57.10.1016/S1386-5056(00)00057-5Suche in Google Scholar

[20] Y.J.Liu, L.J.Zhang, Y.Du, D.Yu, D.Liang: CALPHAD33 (2009) 614. 10.1016/j.calphad.2009.07.002Suche in Google Scholar

[21] B.Jönsson: Scand. J. Metall.23 (1994) 201.10.1006/appe.1994.1053Suche in Google Scholar

[22] P.Franke, G.Inden: Z. Metallkd.88 (1997) 795.Suche in Google Scholar

[23] I.Ansara, B.Sundman, P.Willemin: Acta Metall.36 (1988) 977.Suche in Google Scholar

[24] B.Jönsson. Z. Metallkd.85 (1994) 498501.Suche in Google Scholar

[25] L.A.Girifalco: Phys. Chem. Solids25 (1964) 323. 10.1016/0022-3697(64)90111-8Suche in Google Scholar

[26] T.Helander, J.Ågren: Acta Mater.47 (1999) 1141. 10.1016/S1359-6454(99)00010-5Suche in Google Scholar

[27] Z.Tôkei, J.Bernardini, P.Gas, D.L.Beke: Acta Mater.45 (1997) 541. 10.1016/S1359-6454(96)00196-6Suche in Google Scholar

[28] C.E.Campbell: Acta Mater.56 (2008) 4277. 10.1016/j.actamat.2008.04.061Suche in Google Scholar

[29] S.Dushman, I.Langmuir: Proc. Am. Phys. Soc. (1922) 113.Suche in Google Scholar

[30] C.Zener: J. Appl. Phys.22 (1951) 372. 10.1063/1.1699967Suche in Google Scholar

[31] R.A.Swalin: J. Appl. Phys.27 (1956) 554. 10.1063/1.1722421Suche in Google Scholar

[32] M.Mantina, Y.Wang, R.Arroyave, L.Q.Chen, Z.K.Liu, C.Wolverton: Phys. Rev. Lett.100 (2008) 215901/215901. 10.1103/PhysRevLett.100.215901Suche in Google Scholar PubMed

[33] D.D.Zhao, Y.Kong, A.J.Wang, L.C.Zhou, S.L.Cui, X.M.Yuan, L.J.Zhang, Y.Du: J. Phase Equilib. Diffus.32 (2011) 128. 10.1007/s11669-011-9854-5Suche in Google Scholar

[34] J.Askill: Tracer Diffusion Data for Metals, Alloys, and Simple Oxides, New York, IFI, Plenum (1970).10.1007/978-1-4684-6075-9Suche in Google Scholar

[35] Y.W.Cui, K.Oikawa, R.Kainuma, K.Ishida: J. Phase Equilib. Diffus.27 (2006) 333. 10.1361/154770306X116261Suche in Google Scholar

[36] J.J.Yao, Y.W.Cui, H.S.Liu, H.C.Kou, J.S.Li, L.Zhou: CALPHAD32 (2008) 602. 10.1016/j.calphad.2008.04.002Suche in Google Scholar

[37] C.E.Campbell, J.C.Zhao, M.F.Henry: J. Phase Equilib. Diffus.25 (2004) 6. 10.1361/10549710417966Suche in Google Scholar

[38] A.Engström, J.Ågren: Z. Metallkd.87 (1996) 92.Suche in Google Scholar

[39] G.M.Hood: Phil. Mag.21 (1970) 305. 10.1080/14786437008238419Suche in Google Scholar

[40] G.P.Tiwari, B.D.Sharma: Phil. Mag.24 (1971) 739. 10.1080/14786437108217047Suche in Google Scholar

[41] D.L.Beke, I.Godeny, I.A.Szabo, G.Erdelyi, F.J.Kedves: Philos. Mag. A55 (1987) 425. 10.1080/01418618708209907Suche in Google Scholar

[42] Y.Du, Y.A.Chang, B.Y.Huang, W.P.Gong, Z.P.Jin, H.H.Xu, Z.H.Yuan, Y.Liu, Y.H.He, F.Y.Xie: Mater. Sci. Eng. A363 (2003) 140. 10.1016/S0921-5093(03)00624-5Suche in Google Scholar

[43] P.Grobner: Hutn. Listy10 (1955) 200.10.1093/english/10.59.200-bSuche in Google Scholar

[44] I.A.Akimova, V.M.Mironov, A.V.Pokoev: Fiz. Met. Metalloved.56 (1983) 1225.Suche in Google Scholar

[45] D.Bergner, Y.Khaddour: Diffus. Defect Data, Pt. A95–98 (1993) 709. 10.4028/www.scientific.net/DDF.95-98.709Suche in Google Scholar

[46] O.Taguchi, M.Hagiwara, Y.Yamazaki, Y.Iijima: Diffus. Defect Data, Pt. A194–199 (2001) 91. 10.4028/www.scientific.net/DDF.194-199.91Suche in Google Scholar

[47] O.Taguchi, Y.Iijima, S.Suzuki, T.Nakamura, Y.Hirano, H.Kono: Diffus. Defect Data, Pt. A237–240 (2005) 474. 10.4028/www.scientific.net/DDF.237-240.474Suche in Google Scholar

[48] S.Budurov, P.Kovatchev, Z.Kamenova: Z. Metallk.64 (1973) 652.Suche in Google Scholar

[49] L.J.Zhang, Y.Du, Y.Ouyang, H.H.Xu, X.G.Lu, Y.J.Liu, Y.Kong, J.Wang: Acta Mater.56 (2008) 3940. 10.1016/j.actamat.2008.04.017Suche in Google Scholar

[50] H.R.Freche: Tech. Pub.714 (1936) 325.Suche in Google Scholar

[51] A.Beerwald, Z.Elektrochem: Angew. Phys. Chem.45 (1939) 789.Suche in Google Scholar

[52] R.F.Mehl, F.N.Rhines, K.A.von den Steinen: Met. Alloys13 (1941) 41.Suche in Google Scholar

[53] H.Bückle, Z.Elektrochem: Angew. Phys. Chem.49 (1943) 238.Suche in Google Scholar

[54] D.Bergner, E.Cyrener: Neue Huette18 (1973) 356.Suche in Google Scholar

[55] S.Fujikawa, K.Hirano, Y.Fukushima: Metall. Trans. A9 (1978) 1811. 10.1007/BF02663412Suche in Google Scholar

[56] G.Ghosh: Acta Mater.49 (2001) 2609. 10.1016/S1359-6454(01)00187-2Suche in Google Scholar

[57] R.L.Fogel'son, Y.A.Ugai, A.V.Pokoev, I.A.Akimova, V.D.Kretinin: Fiz. Metal. Metalloved.35 (1973) 1307.Suche in Google Scholar

[58] F.N.Rhines, R.F.Mehl: Trans. AIME128 (1938) 185.Suche in Google Scholar

[59] Y.Iijima, Y.Wakabayashi, T.Itoga, K.Hirano: Mater. Trans., JIM32 (1991) 457.Suche in Google Scholar

[60] Y.Minamino, T.Yamane, T.Kimura, T.Takahashi: J. Mater. Sci. Lett.7 (1988) 365. 10.1007/BF01730745Suche in Google Scholar

[61] H.I.Aaronson, H.A.Domian, A.D.Brailsford: Trans. Am. Inst. Min., Metall. Pet. Eng.242 (1968) 738.Suche in Google Scholar

[62] Y.Du, J.C.Schuster: Z. Metallkd.92 (2001) 28.Suche in Google Scholar

[63] G.Muralidharan, M.C.Petri, J.E.Epperson, H.Chen: Scr. Mater.36 (1996) 219. 10.1016/S1359-6462(96)00362-4Suche in Google Scholar

[64] W.Assassa, P.Guiraldenq: C.R. Acad. Sci., Ser. C279 (1974) 59.Suche in Google Scholar

[65] F.Faupel, C.Kostler, K.Bierbaum, T.Hehenkamp: J. Phys. F18 (1988) 205. 10.1088/0305-4608/18/2/005Suche in Google Scholar

[66] R.A.Swalin, A.Martin, R.Olson: J. Metals9 (1957) 936.Suche in Google Scholar

[67] H.W.Allison, H.Samelson: J. Appl. Phys.30 (1959) 1419. 10.1063/1.1735346Suche in Google Scholar

[68] G.R.Johnston: High Temp.-High Pressures14 (1982) 695.Suche in Google Scholar

[69] J.H.Gülpen, A.A.Kodentsov, F.J.J.van Loo: Z. Metallkd.86 (1995) 530.Suche in Google Scholar

[70] P.K.Rastogi, A.J.Ardell: Acta Met.19 (1971) 321. 10.1016/0001-6160(71)90099-XSuche in Google Scholar

[71] T.M.Radchenko, V.A.Tatarenko, S.M.Bokoch: Metallofiz. Noveishie Tekhnol.28 (2006) 1699.Suche in Google Scholar

[72] T.M.Radchenko, V.A.Tatarenko: Diffus. Defect Data, Pt. A273–276 (2008) 525. 10.4028/www.scientific.net/DDF.273-276.525Suche in Google Scholar

[73] B.Sundman, B.Jönsson, J.O.Andersson: CALPHAD9 (1985) 153. 10.1016/0364-5916(85)90021-5Suche in Google Scholar

[74] http://www.thermocalc.com/MOBDATA.htm, 2012.Suche in Google Scholar

[75] W.B.Alexander, L.Slifkin: Phys. Rev. B1 (1970) 3274. 10.1103/PhysRevB.1.3274Suche in Google Scholar

[76] S.Mantl, W.Petry, K.Schroeder, G.Vogl: Phys. Rev. B27 (1983) 5313. 10.1103/PhysRevB.27.5313Suche in Google Scholar

[77] G.Rummel, T.Zumkley, M.Eggersmann, K.Freitag, H.Mehrer: Z. Metallkd.86 (1995) 122.Suche in Google Scholar

[78] K.Hirano, R.P.Agarwala, M.Cohen: Acta Metall.10 (1962) 837. 10.1016/0001-6160(62)90100-1Suche in Google Scholar

[79] K.Soerensen, G.Trumpy: Phys. Rev. B7 (1973) 1791. 10.1103/PhysRevB.7.1791Suche in Google Scholar

[80] M.Mantina, Y.Wang, L.Q.Chen, Z.K.Liu, C.Wolverton: Acta Mater.57 (2009) 4102. 10.1016/j.actamat.2009.05.006Suche in Google Scholar

[81] J.I.Goldstein, R.E.Hanneman, R.E.Ogilvie: Trans. Am. Inst. Min., Metall. Pet. Eng.233 (1965) 812.Suche in Google Scholar

[82] Y.Nakagawa, Y.Tanji, H.Morita, H.Hiroyoshi, H.Fujimori: J. Magn. Magn. Mater.10 (1979) 145. 10.1016/0304-8853(79)90166-5Suche in Google Scholar

[83] E.A.Balakir, Y.P.Zotov, V.B.Kosachev, A.A.Mukhametova, Y.S.Stark, A.S.Chavchanidze: Poverkhnost (1988) 112.Suche in Google Scholar

[84] T.Takahashi, Y.Minamino, K.Hirao, T.Yamane: Mater. Trans., JIM40 (1999) 997.Suche in Google Scholar

[85] K.E.Kansky, M.A.Dayananda: Metall. Trans. A16 (1985) 1123. 10.1007/BF02811681Suche in Google Scholar

Received: 2012-2-10
Accepted: 2012-7-21
Published Online: 2013-08-17
Published in Print: 2013-02-15

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110846/html?lang=de
Button zum nach oben scrollen