Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)
-
Burçak Ebin
, Övgü Gençer and Sebahattin Gürmen
Abstract
Copper oxide nanoparticles and submicron size spheres were produced via the ultrasonic spray pyrolysis method using copper nitrate without any additives. The effects of the process temperature and solution concentration on the copper oxide particles were investigated. HSC software, differential scanning calorimetry and thermal gravimetric analysis were used for the thermodynamic investigation of the CuO formation by the decomposition reaction. Particle characterization studies were performed using X-ray diffraction, energy dispersive spectroscopy, scanning–and transmission–electron microscopy. The results show that spherical CuO nanoparticles having around 80 nm particle size were prepared at 400 °C and the submicron size CuO spheres were obtained by the aggregation of nanoparticles at elevated temperatures. The crystallite sizes of the particles ranged between 21 and 46 nm.
References
[1] Z.-S.Hong, Y.Cao, J.-F.Deng: Mater. Lett.52 (2002) 34. 10.1016/S0167-577X(01)00361-5Search in Google Scholar
[2] J.Zu, D.Li, H.Chen, X.Yang, L.Lu, X.Wang: Mater. Lett.58 (2004) 3324. 10.1016/j.matlet.2004.06.031Search in Google Scholar
[3] B.J.Hansen, G.Lu, J.Chen: J. Nanomater.2008 (2008) 1. 10.1155/2008/830474Search in Google Scholar
[4] H.Wu, D.Li, W.Pan: Appl. Phys. Lett.89 (2006) 133125. 10.1063/1.2355474Search in Google Scholar
[5] S.C.Lee, S.-H.Park, S.M.Lee, J.B.Lee, H.J.Kim: Catal. Today120 (2007) 358. 10.1016/j.cattod.2006.09.009Search in Google Scholar
[6] K.Zhou, R.Wang, B.Xu, Y.Li: Nanotechnology17 (2006) 3939. 10.1088/0957-4484/17/15/055Search in Google Scholar
[7] C.L.Carnes, K.J.Klabunde: J. Mol. Cataly. A-Chem.194 (2003) 227.Search in Google Scholar
[8] X.Zhang, D.Zhang, X.Ni, H.Zheng: Solid State Electron.52 (2008) 245. 10.1016/j.sse.2007.08.009Search in Google Scholar
[9] G.Ren, D.Hu, E.W.C.Cheng, M.A.Vargas-Reus, P.Reip, R.P.Allaker: Int. J. Antimicrob. Ag.33 (2009) 587. PMid: 19195845; 10.1016/j.ijantimicag.2008.12.004Search in Google Scholar PubMed
[10] Y.-W.Baek, Y.-JAn: Sci. Total Environ.409 (2011) 1603. PMid: 21310463; 10.1016/j.scitotenv.2011.01.014Search in Google Scholar PubMed
[11] V.Bisht, K.P.Rajeev, S.Banerjee: Solid State Commun.150 (2010) 884. 10.1016/j.ssc.2010.01.048Search in Google Scholar
[12] X.Zhang, D.Zhang, X.Ni, J.Song, H.Zheng: J. Nanopart. Res.10 (2008) 839. 10.1007/s11051-007-9320-9Search in Google Scholar
[13] R.Wu, Z.Ma, Z.Gu, Y.Yang: J. Alloy. Compd.504 (2010) 45. 10.1016/j.jallcom.2010.05.062Search in Google Scholar
[14] Z.Guo, X.Liang, T.Pereria, R.Scaffaro, H.T.Hahn: Compos. Sci. Technol.67 (2007) 2036. 10.1016/j.compscitech.2006.11.017Search in Google Scholar
[15] T.Ø.Larsen, T.L.Andersen, B.Thorning, A.Horsewell, M.E.Vigild: Wear265 (2008) 203. 10.1016/j.wear.2007.10.003Search in Google Scholar
[16] K.Iihama, Y.Kuroki, T.Okamoto, M.Takata: Curr. Appl. Phys.9 (2009) S 167. 10.1016/j.cap.2008.12.019Search in Google Scholar
[17] A.Nazari, S.Riahi: J. Mater. Sci. Technol.27/1 (2011) 81.Search in Google Scholar
[18] J.D.Choi, G.M.Choi: Sensor. Actuat. B-Chem.69 (2000) 120.Search in Google Scholar
[19] J.Y.Xiang, J.P.Tu, L.Zhang, Y.Zhou, X.L.Wang, S.J.Shi: J. Power Sources195 (2010) 313. 10.1016/j.jpowsour.2009.07.022Search in Google Scholar
[20] M.Vaseem, A.Umar, S.H.Kim, Y.-B.Hahn: J. Phys. Chem. C112 (2008) 5729. 10.1021/jp710358jSearch in Google Scholar
[21] H.-C.Song, S.-H.Park, Y.-D.Huh: Bull. Korean Chem. Soc.28 (2007) 477. 10.5012/bkcs.2007.28.3.477Search in Google Scholar
[22] M.A.Dar, Q.Ahsanulhaq, Y.S.Kim, J.M.Sohn, W.B.Kim, H.S.Shin: Appl. Surf. Sci.255 (2009) 6279. 10.1016/j.apsusc.2009.02.002Search in Google Scholar
[23] T.Ahmad, R.Chopra, K.V.Ramanujachary, S.E.Lofland, A.K.Ganguli: Solid State Sci.7 (2005) 891. 10.1016/j.solidstatesciences.2004.11.029Search in Google Scholar
[24] D.Han, H.Yang, C.Zhu, F.Wang: Powder Technol.185 (2008) 286. 10.1016/j.powtec.2007.10.018Search in Google Scholar
[25] G.-Q.Yuan, H.-F.Jiang, C.Lin, S.-J.Liao: J. Cryst. Growth.303 (2007) 400. 10.1016/j.jcrysgro.2006.12.047Search in Google Scholar
[26] T.Premkumar, K.E.Geckeler: J. Phys. Chem. Solids67 (2006) 1451. 10.1016/j.jpcs.2006.01.122Search in Google Scholar
[27] W.-T.Yao, S.-H.Yu, Y.Zhou, J.Jiang, Q.-S.Wu, L.Zhang, J.Jiang: J. Phys. Chem. B109 (2005) 14011. PMid: 16852759; 10.1021/jp0517605Search in Google Scholar
[28] H.Wang, J.-Z.Xu, J.-J.Zu, H.-Y.Chen: J. Cryst. Growth244 (2002) 88. 10.1016/S0022-0248(02)01571-3Search in Google Scholar
[29] L.Sun, Z.Zhang, Z.Wang, Z.Wu, H.Dang: Mater. Res. Bull.40 (2005) 1024. 10.1016/j.materresbull.2005.02.016Search in Google Scholar
[30] H.-Q.Wu, X.-W.Wei, M.-W.Shao, J.-S.Gu, M.-Z.Qu: Chem. Phys. Lett.364 (2002) 152. 10.1016/S0009-2614(02)01301-5Search in Google Scholar
[31] T.Premkumar, K.E.Geckeler: Small. 2/5 (2006) 616. PMid: 17193096; 10.1002/smll.200500454Search in Google Scholar PubMed
[32] S.Gurmen, B.Ebin, S.Stopic, B.Friedrich: J. Alloy. Compd.480 (2009) 529. 10.1016/j.jallcom.2009.01.094Search in Google Scholar
[33] S.Gurmen, A.Guven, B.Ebin, S.Stopic, B.Friedrich: J. Alloy. Compd.481 (2009) 600. 10.1016/j.jallcom.2009.03.046Search in Google Scholar
[34] S.Gurmen, B.Ebin: J. Alloy. Compd.492 (2010) 585. 10.1016/j.jallcom.2009.11.186Search in Google Scholar
[35] S.-Y.Yang, S.-G.Kim: Powder Technol.146 (2004) 185. 10.1016/j.powtec.2004.07.010Search in Google Scholar
[36] G.-H.An, G.-H.Wang, B.-H.Kim, Y.-G.Jeong, Y.-H.Choa: Mat. Sci. Eng. A-Struct.449–451 (2007) 821.Search in Google Scholar
[37] I.Taniguchi, N.Fukuda, M.Konarova: Powder Technol.181 (2008) 228. 10.1016/j.powtec.2007.05.011Search in Google Scholar
[38] S.C.Tsai, Y.L.Song, C.S.Tsai, C.C.Yang, W.Y.Chiu, H.M.Lin: J. Mater. Sci.39 (2004) 3647. 10.1023/B:JMSC.0000030718.76690.11Search in Google Scholar
[39] B.Xia, I.W.Lenggoro, K.Okuyama: J. Mater. Sci.36 (2001) 1701. 10.1023/A:1017560206321Search in Google Scholar
[40] K.N.Kim, S.-G.Kim: Powder Technol.145 (2004) 155. 10.1016/j.powtec.2004.06.012Search in Google Scholar
[41] S.W.Oh, H.J.Bang, Y.C.Bae, Y.-K.Sun: J. Power Sources173 (2007) 502. 10.1016/j.jpowsour.2007.04.087Search in Google Scholar
[42] B.Ebin, E.Arıg, S.Gürmen, B.Özkal: Metall.65/12 (2011) 519.Search in Google Scholar
[43] M.M.Bucko, J.Oblakowski: J. Eur. Ceram. Soc.27 (2007) 3625. 10.1016/j.jeurceramsoc.2007.02.008Search in Google Scholar
[44] B.Ebin, S.Gürmen: KONA Powder Part. J29 (2011) 134.Search in Google Scholar
[45] W.N.Wang, A.Purwanto, I.W.Lenggoro, K.Okuyama, H.Chang, H.-D.Jang: Ind. Eng. Chem. Res.47 (2008) 1650. 10.1021/ie070821dSearch in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Structure of composites consolidated from ball milled 7475 aluminum alloy and ZrO2 powders
- Isothermal section of the Al-Tb-V ternary system at 773 K
- Development of an atomic mobility database for disordered and ordered fcc phases in multicomponent Al alloys: focusing on binary systems
- Effect of additive and current density on microstructure and texture characteristics of copper electrodeposits
- Magnetic properties and microwave absorption properties of carbon fibers coated with FeCo alloy
- Effects of BN content on the structural and mechanical properties of a-SiBN ceramics
- Structural and relaxor characteristics of Ca0.18Sr0.226Ba0.594Nb2O6
- Study on the dielectric properties of CaCu3Ti4O12 ceramics using the one-dimensional Ising model
- Erosion wear performance of a surface diffusion alloyed coating on pure magnesium
- Evaluation of the quality of cladding deposited on continuous steel casting rolls
- Investigating the machinability of austempered ductile irons with dual matrix structures
- Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)
- Fabrication of transparent Nd:YAG ceramic by vacuum sintering with CaF2 additive
- Synthesis and characterization of new Bi2FeNiO6 material using a citric acid assisted gel combustion technique
- Processing and characterization of up-converting Er3+ doped (Lu0.5Y0.5)2O3 nanophosphor
- People
- People
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Structure of composites consolidated from ball milled 7475 aluminum alloy and ZrO2 powders
- Isothermal section of the Al-Tb-V ternary system at 773 K
- Development of an atomic mobility database for disordered and ordered fcc phases in multicomponent Al alloys: focusing on binary systems
- Effect of additive and current density on microstructure and texture characteristics of copper electrodeposits
- Magnetic properties and microwave absorption properties of carbon fibers coated with FeCo alloy
- Effects of BN content on the structural and mechanical properties of a-SiBN ceramics
- Structural and relaxor characteristics of Ca0.18Sr0.226Ba0.594Nb2O6
- Study on the dielectric properties of CaCu3Ti4O12 ceramics using the one-dimensional Ising model
- Erosion wear performance of a surface diffusion alloyed coating on pure magnesium
- Evaluation of the quality of cladding deposited on continuous steel casting rolls
- Investigating the machinability of austempered ductile irons with dual matrix structures
- Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)
- Fabrication of transparent Nd:YAG ceramic by vacuum sintering with CaF2 additive
- Synthesis and characterization of new Bi2FeNiO6 material using a citric acid assisted gel combustion technique
- Processing and characterization of up-converting Er3+ doped (Lu0.5Y0.5)2O3 nanophosphor
- People
- People
- DGM News
- DGM News