Startseite Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)

  • Burçak Ebin , Övgü Gençer und Sebahattin Gürmen
Veröffentlicht/Copyright: 17. August 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Copper oxide nanoparticles and submicron size spheres were produced via the ultrasonic spray pyrolysis method using copper nitrate without any additives. The effects of the process temperature and solution concentration on the copper oxide particles were investigated. HSC software, differential scanning calorimetry and thermal gravimetric analysis were used for the thermodynamic investigation of the CuO formation by the decomposition reaction. Particle characterization studies were performed using X-ray diffraction, energy dispersive spectroscopy, scanning–and transmission–electron microscopy. The results show that spherical CuO nanoparticles having around 80 nm particle size were prepared at 400 °C and the submicron size CuO spheres were obtained by the aggregation of nanoparticles at elevated temperatures. The crystallite sizes of the particles ranged between 21 and 46 nm.


* Correspondence address, Prof. Dr. Sebahattin Gürmen, Metallurgical and Materials Eng. Dept. Istanbul Technical University, Ayazaga Campus 34469 Sariyer, Istanbul, Turkey; Tel.: +90 212 285 34 82, Fax: +90 212 285 34 27, E-mail:

References

[1] Z.-S.Hong, Y.Cao, J.-F.Deng: Mater. Lett.52 (2002) 34. 10.1016/S0167-577X(01)00361-5Suche in Google Scholar

[2] J.Zu, D.Li, H.Chen, X.Yang, L.Lu, X.Wang: Mater. Lett.58 (2004) 3324. 10.1016/j.matlet.2004.06.031Suche in Google Scholar

[3] B.J.Hansen, G.Lu, J.Chen: J. Nanomater.2008 (2008) 1. 10.1155/2008/830474Suche in Google Scholar

[4] H.Wu, D.Li, W.Pan: Appl. Phys. Lett.89 (2006) 133125. 10.1063/1.2355474Suche in Google Scholar

[5] S.C.Lee, S.-H.Park, S.M.Lee, J.B.Lee, H.J.Kim: Catal. Today120 (2007) 358. 10.1016/j.cattod.2006.09.009Suche in Google Scholar

[6] K.Zhou, R.Wang, B.Xu, Y.Li: Nanotechnology17 (2006) 3939. 10.1088/0957-4484/17/15/055Suche in Google Scholar

[7] C.L.Carnes, K.J.Klabunde: J. Mol. Cataly. A-Chem.194 (2003) 227.Suche in Google Scholar

[8] X.Zhang, D.Zhang, X.Ni, H.Zheng: Solid State Electron.52 (2008) 245. 10.1016/j.sse.2007.08.009Suche in Google Scholar

[9] G.Ren, D.Hu, E.W.C.Cheng, M.A.Vargas-Reus, P.Reip, R.P.Allaker: Int. J. Antimicrob. Ag.33 (2009) 587. PMid: 19195845; 10.1016/j.ijantimicag.2008.12.004Suche in Google Scholar PubMed

[10] Y.-W.Baek, Y.-JAn: Sci. Total Environ.409 (2011) 1603. PMid: 21310463; 10.1016/j.scitotenv.2011.01.014Suche in Google Scholar PubMed

[11] V.Bisht, K.P.Rajeev, S.Banerjee: Solid State Commun.150 (2010) 884. 10.1016/j.ssc.2010.01.048Suche in Google Scholar

[12] X.Zhang, D.Zhang, X.Ni, J.Song, H.Zheng: J. Nanopart. Res.10 (2008) 839. 10.1007/s11051-007-9320-9Suche in Google Scholar

[13] R.Wu, Z.Ma, Z.Gu, Y.Yang: J. Alloy. Compd.504 (2010) 45. 10.1016/j.jallcom.2010.05.062Suche in Google Scholar

[14] Z.Guo, X.Liang, T.Pereria, R.Scaffaro, H.T.Hahn: Compos. Sci. Technol.67 (2007) 2036. 10.1016/j.compscitech.2006.11.017Suche in Google Scholar

[15] T.Ø.Larsen, T.L.Andersen, B.Thorning, A.Horsewell, M.E.Vigild: Wear265 (2008) 203. 10.1016/j.wear.2007.10.003Suche in Google Scholar

[16] K.Iihama, Y.Kuroki, T.Okamoto, M.Takata: Curr. Appl. Phys.9 (2009) S 167. 10.1016/j.cap.2008.12.019Suche in Google Scholar

[17] A.Nazari, S.Riahi: J. Mater. Sci. Technol.27/1 (2011) 81.Suche in Google Scholar

[18] J.D.Choi, G.M.Choi: Sensor. Actuat. B-Chem.69 (2000) 120.Suche in Google Scholar

[19] J.Y.Xiang, J.P.Tu, L.Zhang, Y.Zhou, X.L.Wang, S.J.Shi: J. Power Sources195 (2010) 313. 10.1016/j.jpowsour.2009.07.022Suche in Google Scholar

[20] M.Vaseem, A.Umar, S.H.Kim, Y.-B.Hahn: J. Phys. Chem. C112 (2008) 5729. 10.1021/jp710358jSuche in Google Scholar

[21] H.-C.Song, S.-H.Park, Y.-D.Huh: Bull. Korean Chem. Soc.28 (2007) 477. 10.5012/bkcs.2007.28.3.477Suche in Google Scholar

[22] M.A.Dar, Q.Ahsanulhaq, Y.S.Kim, J.M.Sohn, W.B.Kim, H.S.Shin: Appl. Surf. Sci.255 (2009) 6279. 10.1016/j.apsusc.2009.02.002Suche in Google Scholar

[23] T.Ahmad, R.Chopra, K.V.Ramanujachary, S.E.Lofland, A.K.Ganguli: Solid State Sci.7 (2005) 891. 10.1016/j.solidstatesciences.2004.11.029Suche in Google Scholar

[24] D.Han, H.Yang, C.Zhu, F.Wang: Powder Technol.185 (2008) 286. 10.1016/j.powtec.2007.10.018Suche in Google Scholar

[25] G.-Q.Yuan, H.-F.Jiang, C.Lin, S.-J.Liao: J. Cryst. Growth.303 (2007) 400. 10.1016/j.jcrysgro.2006.12.047Suche in Google Scholar

[26] T.Premkumar, K.E.Geckeler: J. Phys. Chem. Solids67 (2006) 1451. 10.1016/j.jpcs.2006.01.122Suche in Google Scholar

[27] W.-T.Yao, S.-H.Yu, Y.Zhou, J.Jiang, Q.-S.Wu, L.Zhang, J.Jiang: J. Phys. Chem. B109 (2005) 14011. PMid: 16852759; 10.1021/jp0517605Suche in Google Scholar

[28] H.Wang, J.-Z.Xu, J.-J.Zu, H.-Y.Chen: J. Cryst. Growth244 (2002) 88. 10.1016/S0022-0248(02)01571-3Suche in Google Scholar

[29] L.Sun, Z.Zhang, Z.Wang, Z.Wu, H.Dang: Mater. Res. Bull.40 (2005) 1024. 10.1016/j.materresbull.2005.02.016Suche in Google Scholar

[30] H.-Q.Wu, X.-W.Wei, M.-W.Shao, J.-S.Gu, M.-Z.Qu: Chem. Phys. Lett.364 (2002) 152. 10.1016/S0009-2614(02)01301-5Suche in Google Scholar

[31] T.Premkumar, K.E.Geckeler: Small. 2/5 (2006) 616. PMid: 17193096; 10.1002/smll.200500454Suche in Google Scholar PubMed

[32] S.Gurmen, B.Ebin, S.Stopic, B.Friedrich: J. Alloy. Compd.480 (2009) 529. 10.1016/j.jallcom.2009.01.094Suche in Google Scholar

[33] S.Gurmen, A.Guven, B.Ebin, S.Stopic, B.Friedrich: J. Alloy. Compd.481 (2009) 600. 10.1016/j.jallcom.2009.03.046Suche in Google Scholar

[34] S.Gurmen, B.Ebin: J. Alloy. Compd.492 (2010) 585. 10.1016/j.jallcom.2009.11.186Suche in Google Scholar

[35] S.-Y.Yang, S.-G.Kim: Powder Technol.146 (2004) 185. 10.1016/j.powtec.2004.07.010Suche in Google Scholar

[36] G.-H.An, G.-H.Wang, B.-H.Kim, Y.-G.Jeong, Y.-H.Choa: Mat. Sci. Eng. A-Struct.449–451 (2007) 821.Suche in Google Scholar

[37] I.Taniguchi, N.Fukuda, M.Konarova: Powder Technol.181 (2008) 228. 10.1016/j.powtec.2007.05.011Suche in Google Scholar

[38] S.C.Tsai, Y.L.Song, C.S.Tsai, C.C.Yang, W.Y.Chiu, H.M.Lin: J. Mater. Sci.39 (2004) 3647. 10.1023/B:JMSC.0000030718.76690.11Suche in Google Scholar

[39] B.Xia, I.W.Lenggoro, K.Okuyama: J. Mater. Sci.36 (2001) 1701. 10.1023/A:1017560206321Suche in Google Scholar

[40] K.N.Kim, S.-G.Kim: Powder Technol.145 (2004) 155. 10.1016/j.powtec.2004.06.012Suche in Google Scholar

[41] S.W.Oh, H.J.Bang, Y.C.Bae, Y.-K.Sun: J. Power Sources173 (2007) 502. 10.1016/j.jpowsour.2007.04.087Suche in Google Scholar

[42] B.Ebin, E.Arıg, S.Gürmen, B.Özkal: Metall.65/12 (2011) 519.Suche in Google Scholar

[43] M.M.Bucko, J.Oblakowski: J. Eur. Ceram. Soc.27 (2007) 3625. 10.1016/j.jeurceramsoc.2007.02.008Suche in Google Scholar

[44] B.Ebin, S.Gürmen: KONA Powder Part. J29 (2011) 134.Suche in Google Scholar

[45] W.N.Wang, A.Purwanto, I.W.Lenggoro, K.Okuyama, H.Chang, H.-D.Jang: Ind. Eng. Chem. Res.47 (2008) 1650. 10.1021/ie070821dSuche in Google Scholar

Received: 2012-2-5
Accepted: 2012-8-6
Published Online: 2013-08-17
Published in Print: 2013-02-15

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110853/html
Button zum nach oben scrollen