Home Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)
Article
Licensed
Unlicensed Requires Authentication

Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)

  • Burçak Ebin , Övgü Gençer and Sebahattin Gürmen
Published/Copyright: August 17, 2013
Become an author with De Gruyter Brill

Abstract

Copper oxide nanoparticles and submicron size spheres were produced via the ultrasonic spray pyrolysis method using copper nitrate without any additives. The effects of the process temperature and solution concentration on the copper oxide particles were investigated. HSC software, differential scanning calorimetry and thermal gravimetric analysis were used for the thermodynamic investigation of the CuO formation by the decomposition reaction. Particle characterization studies were performed using X-ray diffraction, energy dispersive spectroscopy, scanning–and transmission–electron microscopy. The results show that spherical CuO nanoparticles having around 80 nm particle size were prepared at 400 °C and the submicron size CuO spheres were obtained by the aggregation of nanoparticles at elevated temperatures. The crystallite sizes of the particles ranged between 21 and 46 nm.


* Correspondence address, Prof. Dr. Sebahattin Gürmen, Metallurgical and Materials Eng. Dept. Istanbul Technical University, Ayazaga Campus 34469 Sariyer, Istanbul, Turkey; Tel.: +90 212 285 34 82, Fax: +90 212 285 34 27, E-mail:

References

[1] Z.-S.Hong, Y.Cao, J.-F.Deng: Mater. Lett.52 (2002) 34. 10.1016/S0167-577X(01)00361-5Search in Google Scholar

[2] J.Zu, D.Li, H.Chen, X.Yang, L.Lu, X.Wang: Mater. Lett.58 (2004) 3324. 10.1016/j.matlet.2004.06.031Search in Google Scholar

[3] B.J.Hansen, G.Lu, J.Chen: J. Nanomater.2008 (2008) 1. 10.1155/2008/830474Search in Google Scholar

[4] H.Wu, D.Li, W.Pan: Appl. Phys. Lett.89 (2006) 133125. 10.1063/1.2355474Search in Google Scholar

[5] S.C.Lee, S.-H.Park, S.M.Lee, J.B.Lee, H.J.Kim: Catal. Today120 (2007) 358. 10.1016/j.cattod.2006.09.009Search in Google Scholar

[6] K.Zhou, R.Wang, B.Xu, Y.Li: Nanotechnology17 (2006) 3939. 10.1088/0957-4484/17/15/055Search in Google Scholar

[7] C.L.Carnes, K.J.Klabunde: J. Mol. Cataly. A-Chem.194 (2003) 227.Search in Google Scholar

[8] X.Zhang, D.Zhang, X.Ni, H.Zheng: Solid State Electron.52 (2008) 245. 10.1016/j.sse.2007.08.009Search in Google Scholar

[9] G.Ren, D.Hu, E.W.C.Cheng, M.A.Vargas-Reus, P.Reip, R.P.Allaker: Int. J. Antimicrob. Ag.33 (2009) 587. PMid: 19195845; 10.1016/j.ijantimicag.2008.12.004Search in Google Scholar PubMed

[10] Y.-W.Baek, Y.-JAn: Sci. Total Environ.409 (2011) 1603. PMid: 21310463; 10.1016/j.scitotenv.2011.01.014Search in Google Scholar PubMed

[11] V.Bisht, K.P.Rajeev, S.Banerjee: Solid State Commun.150 (2010) 884. 10.1016/j.ssc.2010.01.048Search in Google Scholar

[12] X.Zhang, D.Zhang, X.Ni, J.Song, H.Zheng: J. Nanopart. Res.10 (2008) 839. 10.1007/s11051-007-9320-9Search in Google Scholar

[13] R.Wu, Z.Ma, Z.Gu, Y.Yang: J. Alloy. Compd.504 (2010) 45. 10.1016/j.jallcom.2010.05.062Search in Google Scholar

[14] Z.Guo, X.Liang, T.Pereria, R.Scaffaro, H.T.Hahn: Compos. Sci. Technol.67 (2007) 2036. 10.1016/j.compscitech.2006.11.017Search in Google Scholar

[15] T.Ø.Larsen, T.L.Andersen, B.Thorning, A.Horsewell, M.E.Vigild: Wear265 (2008) 203. 10.1016/j.wear.2007.10.003Search in Google Scholar

[16] K.Iihama, Y.Kuroki, T.Okamoto, M.Takata: Curr. Appl. Phys.9 (2009) S 167. 10.1016/j.cap.2008.12.019Search in Google Scholar

[17] A.Nazari, S.Riahi: J. Mater. Sci. Technol.27/1 (2011) 81.Search in Google Scholar

[18] J.D.Choi, G.M.Choi: Sensor. Actuat. B-Chem.69 (2000) 120.Search in Google Scholar

[19] J.Y.Xiang, J.P.Tu, L.Zhang, Y.Zhou, X.L.Wang, S.J.Shi: J. Power Sources195 (2010) 313. 10.1016/j.jpowsour.2009.07.022Search in Google Scholar

[20] M.Vaseem, A.Umar, S.H.Kim, Y.-B.Hahn: J. Phys. Chem. C112 (2008) 5729. 10.1021/jp710358jSearch in Google Scholar

[21] H.-C.Song, S.-H.Park, Y.-D.Huh: Bull. Korean Chem. Soc.28 (2007) 477. 10.5012/bkcs.2007.28.3.477Search in Google Scholar

[22] M.A.Dar, Q.Ahsanulhaq, Y.S.Kim, J.M.Sohn, W.B.Kim, H.S.Shin: Appl. Surf. Sci.255 (2009) 6279. 10.1016/j.apsusc.2009.02.002Search in Google Scholar

[23] T.Ahmad, R.Chopra, K.V.Ramanujachary, S.E.Lofland, A.K.Ganguli: Solid State Sci.7 (2005) 891. 10.1016/j.solidstatesciences.2004.11.029Search in Google Scholar

[24] D.Han, H.Yang, C.Zhu, F.Wang: Powder Technol.185 (2008) 286. 10.1016/j.powtec.2007.10.018Search in Google Scholar

[25] G.-Q.Yuan, H.-F.Jiang, C.Lin, S.-J.Liao: J. Cryst. Growth.303 (2007) 400. 10.1016/j.jcrysgro.2006.12.047Search in Google Scholar

[26] T.Premkumar, K.E.Geckeler: J. Phys. Chem. Solids67 (2006) 1451. 10.1016/j.jpcs.2006.01.122Search in Google Scholar

[27] W.-T.Yao, S.-H.Yu, Y.Zhou, J.Jiang, Q.-S.Wu, L.Zhang, J.Jiang: J. Phys. Chem. B109 (2005) 14011. PMid: 16852759; 10.1021/jp0517605Search in Google Scholar

[28] H.Wang, J.-Z.Xu, J.-J.Zu, H.-Y.Chen: J. Cryst. Growth244 (2002) 88. 10.1016/S0022-0248(02)01571-3Search in Google Scholar

[29] L.Sun, Z.Zhang, Z.Wang, Z.Wu, H.Dang: Mater. Res. Bull.40 (2005) 1024. 10.1016/j.materresbull.2005.02.016Search in Google Scholar

[30] H.-Q.Wu, X.-W.Wei, M.-W.Shao, J.-S.Gu, M.-Z.Qu: Chem. Phys. Lett.364 (2002) 152. 10.1016/S0009-2614(02)01301-5Search in Google Scholar

[31] T.Premkumar, K.E.Geckeler: Small. 2/5 (2006) 616. PMid: 17193096; 10.1002/smll.200500454Search in Google Scholar PubMed

[32] S.Gurmen, B.Ebin, S.Stopic, B.Friedrich: J. Alloy. Compd.480 (2009) 529. 10.1016/j.jallcom.2009.01.094Search in Google Scholar

[33] S.Gurmen, A.Guven, B.Ebin, S.Stopic, B.Friedrich: J. Alloy. Compd.481 (2009) 600. 10.1016/j.jallcom.2009.03.046Search in Google Scholar

[34] S.Gurmen, B.Ebin: J. Alloy. Compd.492 (2010) 585. 10.1016/j.jallcom.2009.11.186Search in Google Scholar

[35] S.-Y.Yang, S.-G.Kim: Powder Technol.146 (2004) 185. 10.1016/j.powtec.2004.07.010Search in Google Scholar

[36] G.-H.An, G.-H.Wang, B.-H.Kim, Y.-G.Jeong, Y.-H.Choa: Mat. Sci. Eng. A-Struct.449–451 (2007) 821.Search in Google Scholar

[37] I.Taniguchi, N.Fukuda, M.Konarova: Powder Technol.181 (2008) 228. 10.1016/j.powtec.2007.05.011Search in Google Scholar

[38] S.C.Tsai, Y.L.Song, C.S.Tsai, C.C.Yang, W.Y.Chiu, H.M.Lin: J. Mater. Sci.39 (2004) 3647. 10.1023/B:JMSC.0000030718.76690.11Search in Google Scholar

[39] B.Xia, I.W.Lenggoro, K.Okuyama: J. Mater. Sci.36 (2001) 1701. 10.1023/A:1017560206321Search in Google Scholar

[40] K.N.Kim, S.-G.Kim: Powder Technol.145 (2004) 155. 10.1016/j.powtec.2004.06.012Search in Google Scholar

[41] S.W.Oh, H.J.Bang, Y.C.Bae, Y.-K.Sun: J. Power Sources173 (2007) 502. 10.1016/j.jpowsour.2007.04.087Search in Google Scholar

[42] B.Ebin, E.Arıg, S.Gürmen, B.Özkal: Metall.65/12 (2011) 519.Search in Google Scholar

[43] M.M.Bucko, J.Oblakowski: J. Eur. Ceram. Soc.27 (2007) 3625. 10.1016/j.jeurceramsoc.2007.02.008Search in Google Scholar

[44] B.Ebin, S.Gürmen: KONA Powder Part. J29 (2011) 134.Search in Google Scholar

[45] W.N.Wang, A.Purwanto, I.W.Lenggoro, K.Okuyama, H.Chang, H.-D.Jang: Ind. Eng. Chem. Res.47 (2008) 1650. 10.1021/ie070821dSearch in Google Scholar

Received: 2012-2-5
Accepted: 2012-8-6
Published Online: 2013-08-17
Published in Print: 2013-02-15

© 2013, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110853/html
Scroll to top button