Development of an atomic mobility database for disordered and ordered fcc phases in multicomponent Al alloys: focusing on binary systems
-
Dandan Liu
, Lijun Zhang , Yong Du , Senlin Cui , Wanqi Jie and Zhanpeng Jin
Abstract
An atomic mobility database for binary disordered and ordered fcc phases in multicomponent Al-Cu-Fe–Mg-Mn–Ni–Si–Zn alloys was established based on a critical review of diffusion data in various constituent binary systems via the DICTRA (DIffusion Controlled TRAnsformation) software package. The mobility parameters for self-diffusion in the metastable fcc structure were determined through a semi-empirical method. An effective strategy, which takes the homogeneity range and defect concentration into account, was used to optimize the atomic mobilities of L12 phase in the Fe–Ni system. Comprehensive comparisons between various calculated and measured diffusivities show that most of the experimental data can be well reproduced by the presently obtained atomic mobilities. The general agreement between the model-predicted concentration profiles and the experimental ones in the Al-Ni–Si, Al-Mg-Zn and Cu-Mn–Ni–Zn diffusion couples validates the potential application of the present atomic mobility database to predict the concentration profiles in higher order systems. An 8-elemental diffusion couple was also simulated with the present database.
References
[1] A.Borgenstam, A.Engström, L.Höglund, J.Ågren: J. Phase Equilib.21 (2000) 269. 10.1361/105497100770340057Search in Google Scholar
[2] J.O.Andersson, J.Ågren: J. Appl. Phys.72 (1992) 1350. 10.1063/1.351745Search in Google Scholar
[3] L.J.Zhang, Y.Du, I.Steinbach, Q.Chen, B.Y.Huang: Acta Mater.58 (2010) 3664. 10.1016/j.actamat.2010.03.002Search in Google Scholar
[4] L.Höglund, J.Ågren: Acta Mater.49 (2001) 1311. 10.1016/S1359-6454(01)00054-4Search in Google Scholar
[5] H.Strandlund, H.Larsson: Acta Mater.52 (2004) 4695. 10.1016/j.actamat.2004.06.039Search in Google Scholar
[6] N.Dupin, B.Sundman: Scand. J. Metall.30 (2001) 184. 10.1034/j.1600-0692.2001.300309.xSearch in Google Scholar
[7] S.L.Shang, H.Zhang, S.Ganeshan, Z.-K.Liu: Jom.60 (2008) 45. 10.1007/s11837-008-0165-1Search in Google Scholar
[8] Y.Du, S.H.Liu, L.J.Zhang, H.H.Xu, D.D.Zhao, A.J.Wang, L.C.Zhou: CALPHAD35 (2011) 427. 10.1016/j.calphad.2011.06.007Search in Google Scholar
[9] J.O.Andersson, T.Helander, L.Höglund, P.Shi, B.Sundman: CALPHAD26 (2002) 273. 10.1016/S0364-5916(02)00037-8Search in Google Scholar
[10] C.E.Campbell, W.J.Boettinger, U.R.Kattner: Acta Mater.50 (2002) 775. 10.1016/S1359-6454(01)00383-4Search in Google Scholar
[11] D.D.Liu, L.J.Zhang, Y.Du, H.H.Xu, S.H.Liu, L.B.Liu: CALPHAD33 (2009) 761. 10.1016/j.calphad.2009.10.004Search in Google Scholar
[12] H.Chang, L.Huang, J.J.Yao, Y.W.Cui, J.S.Li, L.Zhou: CALPHAD34 (2010) 68. 10.1016/j.calphad.2009.12.002Search in Google Scholar
[13] W.B.Zhang, Y.Du, D.D.Zhao, L.J.Zhang, H.H.Xu, S.H.Liu, Y.W.Li, S.Q.Liang: CALPHAD34 (2010) 286. 10.1016/j.calphad.2010.05.003Search in Google Scholar
[14] L.J.Zhang, Y.Du, Q.Chen, I.Steinbach, B.Y.Huang: Int. J. Mater. Res.101 (2010) 1461. 10.3139/146.110428Search in Google Scholar
[15] S.L.Cui, Y.Du, L.J.Zhang, Y.J.Liu, H.H.Xu: CALPHAD34 (2010) 446. 10.1016/j.calphad.2010.08.002Search in Google Scholar
[16] Y.J.Liu, J.Wang, Y.Du, L.J.Zhang, D.Liang: CALPHAD34 (2010) 253. 10.1016/j.calphad.2010.04.002Search in Google Scholar
[17] W.B.Zhang, Y.Du, L.J.Zhang, H.H.Xu, S.H.Liu, L.Chen: CALPHAD35 (2011) 367. 10.1016/j.calphad.2011.04.009Search in Google Scholar
[18] S.L.Cui, L.J.Zhang, Y.Du, D.D.Zhao, H.H.Xu, W.B.Zhang, S.H.Liu: CALPHAD35 (2011) 231. 10.1016/j.calphad.2010.10.002Search in Google Scholar
[19] E.Kozeschnik: Z. Metallkd.91 (2000) 57.10.1016/S1386-5056(00)00057-5Search in Google Scholar
[20] Y.J.Liu, L.J.Zhang, Y.Du, D.Yu, D.Liang: CALPHAD33 (2009) 614. 10.1016/j.calphad.2009.07.002Search in Google Scholar
[21] B.Jönsson: Scand. J. Metall.23 (1994) 201.10.1006/appe.1994.1053Search in Google Scholar
[22] P.Franke, G.Inden: Z. Metallkd.88 (1997) 795.Search in Google Scholar
[23] I.Ansara, B.Sundman, P.Willemin: Acta Metall.36 (1988) 977.Search in Google Scholar
[24] B.Jönsson. Z. Metallkd.85 (1994) 498–501.Search in Google Scholar
[25] L.A.Girifalco: Phys. Chem. Solids25 (1964) 323. 10.1016/0022-3697(64)90111-8Search in Google Scholar
[26] T.Helander, J.Ågren: Acta Mater.47 (1999) 1141. 10.1016/S1359-6454(99)00010-5Search in Google Scholar
[27] Z.Tôkei, J.Bernardini, P.Gas, D.L.Beke: Acta Mater.45 (1997) 541. 10.1016/S1359-6454(96)00196-6Search in Google Scholar
[28] C.E.Campbell: Acta Mater.56 (2008) 4277. 10.1016/j.actamat.2008.04.061Search in Google Scholar
[29] S.Dushman, I.Langmuir: Proc. Am. Phys. Soc. (1922) 113.Search in Google Scholar
[30] C.Zener: J. Appl. Phys.22 (1951) 372. 10.1063/1.1699967Search in Google Scholar
[31] R.A.Swalin: J. Appl. Phys.27 (1956) 554. 10.1063/1.1722421Search in Google Scholar
[32] M.Mantina, Y.Wang, R.Arroyave, L.Q.Chen, Z.K.Liu, C.Wolverton: Phys. Rev. Lett.100 (2008) 215901/215901. 10.1103/PhysRevLett.100.215901Search in Google Scholar PubMed
[33] D.D.Zhao, Y.Kong, A.J.Wang, L.C.Zhou, S.L.Cui, X.M.Yuan, L.J.Zhang, Y.Du: J. Phase Equilib. Diffus.32 (2011) 128. 10.1007/s11669-011-9854-5Search in Google Scholar
[34] J.Askill: Tracer Diffusion Data for Metals, Alloys, and Simple Oxides, New York, IFI, Plenum (1970).10.1007/978-1-4684-6075-9Search in Google Scholar
[35] Y.W.Cui, K.Oikawa, R.Kainuma, K.Ishida: J. Phase Equilib. Diffus.27 (2006) 333. 10.1361/154770306X116261Search in Google Scholar
[36] J.J.Yao, Y.W.Cui, H.S.Liu, H.C.Kou, J.S.Li, L.Zhou: CALPHAD32 (2008) 602. 10.1016/j.calphad.2008.04.002Search in Google Scholar
[37] C.E.Campbell, J.C.Zhao, M.F.Henry: J. Phase Equilib. Diffus.25 (2004) 6. 10.1361/10549710417966Search in Google Scholar
[38] A.Engström, J.Ågren: Z. Metallkd.87 (1996) 92.Search in Google Scholar
[39] G.M.Hood: Phil. Mag.21 (1970) 305. 10.1080/14786437008238419Search in Google Scholar
[40] G.P.Tiwari, B.D.Sharma: Phil. Mag.24 (1971) 739. 10.1080/14786437108217047Search in Google Scholar
[41] D.L.Beke, I.Godeny, I.A.Szabo, G.Erdelyi, F.J.Kedves: Philos. Mag. A55 (1987) 425. 10.1080/01418618708209907Search in Google Scholar
[42] Y.Du, Y.A.Chang, B.Y.Huang, W.P.Gong, Z.P.Jin, H.H.Xu, Z.H.Yuan, Y.Liu, Y.H.He, F.Y.Xie: Mater. Sci. Eng. A363 (2003) 140. 10.1016/S0921-5093(03)00624-5Search in Google Scholar
[43] P.Grobner: Hutn. Listy10 (1955) 200.10.1093/english/10.59.200-bSearch in Google Scholar
[44] I.A.Akimova, V.M.Mironov, A.V.Pokoev: Fiz. Met. Metalloved.56 (1983) 1225.Search in Google Scholar
[45] D.Bergner, Y.Khaddour: Diffus. Defect Data, Pt. A95–98 (1993) 709. 10.4028/www.scientific.net/DDF.95-98.709Search in Google Scholar
[46] O.Taguchi, M.Hagiwara, Y.Yamazaki, Y.Iijima: Diffus. Defect Data, Pt. A194–199 (2001) 91. 10.4028/www.scientific.net/DDF.194-199.91Search in Google Scholar
[47] O.Taguchi, Y.Iijima, S.Suzuki, T.Nakamura, Y.Hirano, H.Kono: Diffus. Defect Data, Pt. A237–240 (2005) 474. 10.4028/www.scientific.net/DDF.237-240.474Search in Google Scholar
[48] S.Budurov, P.Kovatchev, Z.Kamenova: Z. Metallk.64 (1973) 652.Search in Google Scholar
[49] L.J.Zhang, Y.Du, Y.Ouyang, H.H.Xu, X.G.Lu, Y.J.Liu, Y.Kong, J.Wang: Acta Mater.56 (2008) 3940. 10.1016/j.actamat.2008.04.017Search in Google Scholar
[50] H.R.Freche: Tech. Pub.714 (1936) 325.Search in Google Scholar
[51] A.Beerwald, Z.Elektrochem: Angew. Phys. Chem.45 (1939) 789.Search in Google Scholar
[52] R.F.Mehl, F.N.Rhines, K.A.von den Steinen: Met. Alloys13 (1941) 41.Search in Google Scholar
[53] H.Bückle, Z.Elektrochem: Angew. Phys. Chem.49 (1943) 238.Search in Google Scholar
[54] D.Bergner, E.Cyrener: Neue Huette18 (1973) 356.Search in Google Scholar
[55] S.Fujikawa, K.Hirano, Y.Fukushima: Metall. Trans. A9 (1978) 1811. 10.1007/BF02663412Search in Google Scholar
[56] G.Ghosh: Acta Mater.49 (2001) 2609. 10.1016/S1359-6454(01)00187-2Search in Google Scholar
[57] R.L.Fogel'son, Y.A.Ugai, A.V.Pokoev, I.A.Akimova, V.D.Kretinin: Fiz. Metal. Metalloved.35 (1973) 1307.Search in Google Scholar
[58] F.N.Rhines, R.F.Mehl: Trans. AIME128 (1938) 185.Search in Google Scholar
[59] Y.Iijima, Y.Wakabayashi, T.Itoga, K.Hirano: Mater. Trans., JIM32 (1991) 457.Search in Google Scholar
[60] Y.Minamino, T.Yamane, T.Kimura, T.Takahashi: J. Mater. Sci. Lett.7 (1988) 365. 10.1007/BF01730745Search in Google Scholar
[61] H.I.Aaronson, H.A.Domian, A.D.Brailsford: Trans. Am. Inst. Min., Metall. Pet. Eng.242 (1968) 738.Search in Google Scholar
[62] Y.Du, J.C.Schuster: Z. Metallkd.92 (2001) 28.Search in Google Scholar
[63] G.Muralidharan, M.C.Petri, J.E.Epperson, H.Chen: Scr. Mater.36 (1996) 219. 10.1016/S1359-6462(96)00362-4Search in Google Scholar
[64] W.Assassa, P.Guiraldenq: C.R. Acad. Sci., Ser. C279 (1974) 59.Search in Google Scholar
[65] F.Faupel, C.Kostler, K.Bierbaum, T.Hehenkamp: J. Phys. F18 (1988) 205. 10.1088/0305-4608/18/2/005Search in Google Scholar
[66] R.A.Swalin, A.Martin, R.Olson: J. Metals9 (1957) 936.Search in Google Scholar
[67] H.W.Allison, H.Samelson: J. Appl. Phys.30 (1959) 1419. 10.1063/1.1735346Search in Google Scholar
[68] G.R.Johnston: High Temp.-High Pressures14 (1982) 695.Search in Google Scholar
[69] J.H.Gülpen, A.A.Kodentsov, F.J.J.van Loo: Z. Metallkd.86 (1995) 530.Search in Google Scholar
[70] P.K.Rastogi, A.J.Ardell: Acta Met.19 (1971) 321. 10.1016/0001-6160(71)90099-XSearch in Google Scholar
[71] T.M.Radchenko, V.A.Tatarenko, S.M.Bokoch: Metallofiz. Noveishie Tekhnol.28 (2006) 1699.Search in Google Scholar
[72] T.M.Radchenko, V.A.Tatarenko: Diffus. Defect Data, Pt. A273–276 (2008) 525. 10.4028/www.scientific.net/DDF.273-276.525Search in Google Scholar
[73] B.Sundman, B.Jönsson, J.O.Andersson: CALPHAD9 (1985) 153. 10.1016/0364-5916(85)90021-5Search in Google Scholar
[74] http://www.thermocalc.com/MOBDATA.htm, 2012.Search in Google Scholar
[75] W.B.Alexander, L.Slifkin: Phys. Rev. B1 (1970) 3274. 10.1103/PhysRevB.1.3274Search in Google Scholar
[76] S.Mantl, W.Petry, K.Schroeder, G.Vogl: Phys. Rev. B27 (1983) 5313. 10.1103/PhysRevB.27.5313Search in Google Scholar
[77] G.Rummel, T.Zumkley, M.Eggersmann, K.Freitag, H.Mehrer: Z. Metallkd.86 (1995) 122.Search in Google Scholar
[78] K.Hirano, R.P.Agarwala, M.Cohen: Acta Metall.10 (1962) 837. 10.1016/0001-6160(62)90100-1Search in Google Scholar
[79] K.Soerensen, G.Trumpy: Phys. Rev. B7 (1973) 1791. 10.1103/PhysRevB.7.1791Search in Google Scholar
[80] M.Mantina, Y.Wang, L.Q.Chen, Z.K.Liu, C.Wolverton: Acta Mater.57 (2009) 4102. 10.1016/j.actamat.2009.05.006Search in Google Scholar
[81] J.I.Goldstein, R.E.Hanneman, R.E.Ogilvie: Trans. Am. Inst. Min., Metall. Pet. Eng.233 (1965) 812.Search in Google Scholar
[82] Y.Nakagawa, Y.Tanji, H.Morita, H.Hiroyoshi, H.Fujimori: J. Magn. Magn. Mater.10 (1979) 145. 10.1016/0304-8853(79)90166-5Search in Google Scholar
[83] E.A.Balakir, Y.P.Zotov, V.B.Kosachev, A.A.Mukhametova, Y.S.Stark, A.S.Chavchanidze: Poverkhnost (1988) 112.Search in Google Scholar
[84] T.Takahashi, Y.Minamino, K.Hirao, T.Yamane: Mater. Trans., JIM40 (1999) 997.Search in Google Scholar
[85] K.E.Kansky, M.A.Dayananda: Metall. Trans. A16 (1985) 1123. 10.1007/BF02811681Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Structure of composites consolidated from ball milled 7475 aluminum alloy and ZrO2 powders
- Isothermal section of the Al-Tb-V ternary system at 773 K
- Development of an atomic mobility database for disordered and ordered fcc phases in multicomponent Al alloys: focusing on binary systems
- Effect of additive and current density on microstructure and texture characteristics of copper electrodeposits
- Magnetic properties and microwave absorption properties of carbon fibers coated with FeCo alloy
- Effects of BN content on the structural and mechanical properties of a-SiBN ceramics
- Structural and relaxor characteristics of Ca0.18Sr0.226Ba0.594Nb2O6
- Study on the dielectric properties of CaCu3Ti4O12 ceramics using the one-dimensional Ising model
- Erosion wear performance of a surface diffusion alloyed coating on pure magnesium
- Evaluation of the quality of cladding deposited on continuous steel casting rolls
- Investigating the machinability of austempered ductile irons with dual matrix structures
- Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)
- Fabrication of transparent Nd:YAG ceramic by vacuum sintering with CaF2 additive
- Synthesis and characterization of new Bi2FeNiO6 material using a citric acid assisted gel combustion technique
- Processing and characterization of up-converting Er3+ doped (Lu0.5Y0.5)2O3 nanophosphor
- People
- People
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Structure of composites consolidated from ball milled 7475 aluminum alloy and ZrO2 powders
- Isothermal section of the Al-Tb-V ternary system at 773 K
- Development of an atomic mobility database for disordered and ordered fcc phases in multicomponent Al alloys: focusing on binary systems
- Effect of additive and current density on microstructure and texture characteristics of copper electrodeposits
- Magnetic properties and microwave absorption properties of carbon fibers coated with FeCo alloy
- Effects of BN content on the structural and mechanical properties of a-SiBN ceramics
- Structural and relaxor characteristics of Ca0.18Sr0.226Ba0.594Nb2O6
- Study on the dielectric properties of CaCu3Ti4O12 ceramics using the one-dimensional Ising model
- Erosion wear performance of a surface diffusion alloyed coating on pure magnesium
- Evaluation of the quality of cladding deposited on continuous steel casting rolls
- Investigating the machinability of austempered ductile irons with dual matrix structures
- Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)
- Fabrication of transparent Nd:YAG ceramic by vacuum sintering with CaF2 additive
- Synthesis and characterization of new Bi2FeNiO6 material using a citric acid assisted gel combustion technique
- Processing and characterization of up-converting Er3+ doped (Lu0.5Y0.5)2O3 nanophosphor
- People
- People
- DGM News
- DGM News