A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
-
Sondes Dabbous
, Amel Amlouk , Tarak Ben Nasrallah , Karem Boubaker , Mahmoud Bouhafs und Mosbah Amlouk
Abstract
In this work, WO3 films have been grown using spray pyrolysis of ammonium tungstate precursor on glass substrates. The obtained WO3 films have been subjected to sulfurization under vacuum at 550°C. The structural properties of the obtained films were investigated using X-ray diffraction, atomic force microscopy and scanning electronic microscopy. The results showed that the sulfurized films contained only WS2. The c-axis preferential orientation of the WS2 films has been verified by several means. The deposition technique is simple and less expensive than several recently proposed ones.
References
[1] H.D.Abruna, A.J.Bard: J. Electrochem. Soc.129 (1982) 673. 10.1149/1.2123949Suche in Google Scholar
[2] A.Jager-Waldau, E.Bucher: Thin Solid Films200 (1991) 157. 10.1016/0040-6090(91)90038-YSuche in Google Scholar
[3] A.Jager-Waldau, M.L.Steiner, R.Jager-Waldau, R.Burkhart, E.Bucher: Thin Solid Films189 (1990) 339. 10.1016/0040-6090(90)90463-NSuche in Google Scholar
[4] S.Belgacem, J.M.Saurel, J.Bougnot: Thin Solid Films92 (1982) 199. 10.1016/0040-6090(82)90001-3Suche in Google Scholar
[5] P.D.Fleischauer: Thin Solid Films154 (1987) 309. 10.1016/0040-6090(87)90375-0Suche in Google Scholar
[6] R.Bichsel, F.Lévy: Thin Solid Films116 (1984) 367. 10.1016/0040-6090(84)90117-2Suche in Google Scholar
[7] S.Belgacem, R.Bennaceur, J.Saurel, J.Bougnot: Rev. Phys. Appl.25 (1990) 1245–1258. 10.1051/rphysap:0199000250120124500Suche in Google Scholar
[8] J.W.Chung, Z.R.Dai, F.S.Ohuchi: J. Cryst. Growth186 (1988) 137. 10.1016/S0022-0248(97)00479-XSuche in Google Scholar
[9] M.Genut, L.Margulis, R.Tenne, G.Hodes: Thin Solid Films219 (1992) 30. 10.1016/0040-6090(92)90720-VSuche in Google Scholar
[10] V.Buck: Thin Solid Films139 (1986) 157. 10.1016/0040-6090(86)90334-2Suche in Google Scholar
[11] P.A.Bertrand: J. Mater. Res.4 (1989) 180. 10.1557/JMR.1989.0180Suche in Google Scholar
[12] J.J.Devadasan, C.Sanjeeviraja, M.Jayachandran: J. Cryst. Growth226 (2001) 67. 10.1016/S0022-0248(01)00851-XSuche in Google Scholar
[13] J.W.Chung, Z.R.Dai, F.S.Ohuchi: J. Cryst. Growth186 (1988) 137. 10.1016/S0022-0248(97)00479-XSuche in Google Scholar
[14] T.Tsirlina, S.Cohen, H.Cohen, L.Spair, M.Peisach, R.Tenne, A.Matthaeus, S.Tiefenbacher, W.Jaegermann, E.A.Ponomarev, C.Levy-Clement: Sol. Energy Mater.44 (1996) 457. 10.1016/S0927-0248(96)00048-7Suche in Google Scholar
[15] A.Klein, S.Tiefenbacher, V.Eyert, C.Pettenkofer, W.Jaegermann: Phys. Rev. B64 (2001) 205416. 10.1103/PhysRevB.64.205416Suche in Google Scholar
[16] T.W.Scharf, S.V.Prasad, M.T.Dugger, P.G.Kotula, R.S.Goeke, R.K.Grubbs: Acta Mater.54 (2006) 4731. 10.1016/j.actamat.2006.06.009Suche in Google Scholar
[17] J.M.Martin, C.Donnet, T.LeMogne, T.Epicier: Phys. Rev.B48 (1993) 10583. 10.1103/PhysRevB.48.10583Suche in Google Scholar
[18] P.S.Patil, S.B.Nikam, L.D.Kadam: Mater. Chem. Phys.69 (2001) 77. 10.1016/S0254-0584(00)00382-5Suche in Google Scholar
[19] J.E.Dutrizac: J. Less-Common Met.31 (1973) 281. 10.1016/0022-5088(73)90164-1Suche in Google Scholar
[20] T.Tsirlina, S.Cohen, H.Cohen, L.Sapir, M.Peisach, R.Tennea, A.Matthaeus, S.Tiefenbacher, W.Jaegermann, E.A.Ponomarev, C.Lévy-Clément: Sol. Energy Mater. Sol.44 (1996) 457. 10.1016/S0927-0248(96)00048-7Suche in Google Scholar
[21] S.J.Li, J.C.Bernede, J.Pouzet, M.Jamali: J. Phys. and Condens. Matter.8 (1996) 2291. 10.1088/0953-8984/8/14/006Suche in Google Scholar
[22] G.W.Gingerich Richard: Patent N°: 6960556, Spherical tungsten disulfide powder, Publication number: US 2004/0038832 A1, Osram Sylvania Inc., 2004.Suche in Google Scholar
[23] K.B.Ben Mahmoud, M.Amlouk: Mater. Lett.63 (2009) 991. 10.1016/j.matlet.2009.01.063Suche in Google Scholar
[24] S.Fridjine, M.Amlouk: Mod. Phys. Lett.B23 (2009) 2179. 10.1142/S0217984909020321Suche in Google Scholar
[25] A.Belhadj, O.F.Onyango, N.Rozibaeva: J. Thermophys. Heat Transfer23 (2009) 639.Suche in Google Scholar
[26] S.Tabatabaei, T.Zhao, O.Awojoyogbe, F.Moses: Heat Mass Transfer45 (2009) 1247. 10.1007/s00231-009-0493-xSuche in Google Scholar
[27] J.Ghanouchi, H.Labiadh and K.Boubaker: Int. J. Heat Technol.26 (2008) 49.Suche in Google Scholar
[28] A.Chaouachi, K.Boubaker, M.Amlouk, H.Bouzouita: Eur. Phys. J. Appl. Phys.37 (2007) 105. 10.1051/epjap:2007005Suche in Google Scholar
[29] O.B.Awojoyogbe, K.Boubaker: Curr. Appl. Phys.9 (2009) 278. 10.1016/j.cap.2008.01.019Suche in Google Scholar
[30] H.Labiadh: J. Diff. Equ. Control Process1 (2007) 172.Suche in Google Scholar
[31] S.Slama, J.Bessrour, M.Bouhafs, K.B.Ben Mahmoud: Num. Heat Transf. Part A55 (2009) 401. 10.1080/10407780902720783Suche in Google Scholar
[32] K.Boubaker: Int. J. Heat Technol.20 (2008) 31.Suche in Google Scholar
[33] S.Badzioch, D.R.Gregory, M.A.Field: Fuel43 (1964) 267.Suche in Google Scholar
[34] D.Merrick: Coal Science and Chemistry, A.Volborth (Ed.), Elsevier, Amsterdam (1987).Suche in Google Scholar
[35] R.D.La Nauze: Fuel61 (1982) 771. 10.1016/0016-2361(82)90255-1Suche in Google Scholar
[36] P.K.Agarwal, W.E.Genetti, Y.Y.Lee: Fuel63 (1984) 1157. 10.1016/0016-2361(84)90205-9Suche in Google Scholar
[37] N.Devanathan, S.C.Saxena: Chem. Eng. Sci.41 (1986) 2442. 10.1016/0009-2509(86)85098-9Suche in Google Scholar
[38] M.Fujitsuka, B.Tsuchiya, I.Mutoh, T.Tanabe, T.Shikama: J. Nuclear Mater.283 (2000) 1148. 10.1016/S0022-3115(00)00170-7Suche in Google Scholar
[39] H.Shibata, K.Okubo, H.Ohta, Y.Waseda: J. Non-Cryst. Solids312 (2002) 172. 10.1016/S0022-3093(02)01682-4Suche in Google Scholar
[40] T.Hirai, G.Pintsuk: Fusion Eng. Des.82 (2007) 389. 10.1016/j.fusengdes.2007.03.032Suche in Google Scholar
[41] H.Kang: J. Nucl. Mater.335 (2004) 1. 10.1016/j.jnucmat.2004.06.001Suche in Google Scholar
[42] C.Moreau, P.Fargier-Richard, R.G.Saint-Jacques, P.Cielo: Surf. Coat. Technol.61 (1993) 67. 10.1016/0257-8972(93)90204-2Suche in Google Scholar
[43] T.Boddington, P.G.Laye, J.Tipping: Combustion and Flame50 (1983) 139. 10.1016/0010-2180(83)90057-3Suche in Google Scholar
[44] M.Regula, C.Ballif, M.Remskar, F.Levy: J. Vac. Sci. Technol.A15 (1997) 2323. 10.1116/1.580742Suche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of texture on grain growth in an interstitial-free steel sheet
- Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
- Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
- Modelling of three powder compaction laws for cold die pressing
- Surface tension and density of liquid Sn–Ag–Cu alloys
- Thermodynamics of liquid Au–Sb–Sn
- Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
- Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
- First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
- Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
- On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
- Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
- Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
- A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
- Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
- Short Communications
- Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of texture on grain growth in an interstitial-free steel sheet
- Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
- Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
- Modelling of three powder compaction laws for cold die pressing
- Surface tension and density of liquid Sn–Ag–Cu alloys
- Thermodynamics of liquid Au–Sb–Sn
- Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
- Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
- First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
- Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
- On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
- Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
- Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
- A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
- Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
- Short Communications
- Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
- DGM News
- DGM News