Home Thermodynamics of liquid Au–Sb–Sn
Article
Licensed
Unlicensed Requires Authentication

Thermodynamics of liquid Au–Sb–Sn

  • Peter Terzieff , Michael Hindler , Adolf Mikula and Herbert Ipser
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The thermodynamic properties of liquid Au–Sb–Sn are discussed with regard to the energetics of the system. The analysis in terms of the partial excess Gibbs energies and the partial enthalpies of mixing indicates that the presence of Sb in the alloys is energetically unfavourable. In addition, this is found also to be reflected by the concentration–concentration correlations in the long-wavelength limit, Sccij, which are representative of the fluctuations in local composition occuring in the system. It is suggested that the analysis of the partial quantities in the system might give an extremely helpful contribution to understanding the energetics of multi-component systems.


* Correspondence address, Peter Terzieff, Institut für Anorganische Chemie/Materialchemie, Universität Wien, Währingerstrasse 42, A-1090 Wien, Austria. Tel.: +431427752908, Fax: +43142779529, E-mail:

References

[1] M.Hindler, Z.Guo, A.Mikula: submitted to J. Chem. Thermodyamics.Search in Google Scholar

[2] R.Hultgren, P.D.Desai, D.T.Hawkins, M.Gleiser, K. K.Kelley: Selected Values of the Thermodynamic Properties of Binary Alloys, Metals Park, Ohio, American Society of Metals (1973).Search in Google Scholar

[3] K.Kameda, T.Akazami, M.Kameda: Nippon Kinzoku Gakkaishi38 (1974) 434.Search in Google Scholar

[4] M.Hino, T.Akazami, M.Kameda: Nippon Kinzoku Gakkaishi39 (1975) 1175.Search in Google Scholar

[5] K.Kameda, S.Sakairi, Y.Yoshida: Nippon Kinzoku Gakkaishi41 (1977) 950.Search in Google Scholar

[6] V.Vassiliev, M.LeLaurin, J.Hertz: J. Alloys Compd.247 (1997) 223. 10.1016/S0925-8388(96)02654-0Search in Google Scholar

[7] E.Hayer, R.Castanet: Z. Metallkd.86 (1995) 8.Search in Google Scholar

[8] E.Hayer, K.L.Komarek, J.P.Bros, M.Gaune-Escard: Z. Metallkd.72 (1981) 109.Search in Google Scholar

[9] F.Sommer, R.Lück, N.Rumpf-Bolz, B.Predel: Mater. Res. Bull.18 (1983) 621. 10.1016/0025-5408(83)90221-0Search in Google Scholar

[10] R.SchuhmannJr: Acta Met.3 (1955) 219. 10.1016/0001-6160(55)90055-9Search in Google Scholar

[11] O.Redlich, A.T.Kister: Ind. Eng. Chem.24 (1948) 345. 10.1021/ie50458a036Search in Google Scholar

[12] Y.M.Muggianu: Doct. Spé., Univ. Provence, Marseille (1973).Search in Google Scholar

[13] H.S.Liu, C.L.Liu, K.Ishida, Z.P.Jin: J. Electron. Mater.32 (2003) 1290. 10.1007/s11664-003-0025-2Search in Google Scholar

[14] F.Gao, C.P.Wang, X.J.Liu, Y.Takaku, I.Ohnuma, K.Ishida: J. Mater. Res.25 (2010) 576. 10.1557/JMR.2010.0056Search in Google Scholar

[15] B.Jönsson, J. Agren: Mater. Sci. Technol.2 (1986) 913. 10.1179/026708386790219480Search in Google Scholar

[16] S.W.Chen, C.C.Chen, W.Gierlotka, A.R.Zi, P.Y.Chen, H.J.Wu: J. Electron. Mater.37 (2008) 992. 10.1007/s11664-008-0464-xSearch in Google Scholar

[17] J.H.Kim, S.W.Jeong, H.M.Lee: J. Electron. Mater.31 (2002) 557. 10.1007/s11664-002-0125-4Search in Google Scholar

[18] M.Hindler, A.Mikula: Int. J. Mater. Res.103 (2012) 858Search in Google Scholar

[19] L.S.Darken: Trans-TMS, AIME, 239 (1967) 80.Search in Google Scholar

[20] A.B.Bhatia, D.E.Thornton: Phys. Rev.B2 (1970) 3004. 10.1103/PhysRevB.2.3004Search in Google Scholar

[21] A.B.Bhatia, V.K.Ratti: Phys. Chem. Liq.6 (1977) 201. 10.1080/00319107708084140Search in Google Scholar

[22] A.B.Bhatia: Int. Conf. Liquid Metals (Bristol1976), Conference Series-Institute of Physics 30, 21.Search in Google Scholar

Received: 2011-11-2
Accepted: 2012-6-18
Published Online: 2013-05-31
Published in Print: 2012-12-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Effect of texture on grain growth in an interstitial-free steel sheet
  5. Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
  6. Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
  7. Modelling of three powder compaction laws for cold die pressing
  8. Surface tension and density of liquid Sn–Ag–Cu alloys
  9. Thermodynamics of liquid Au–Sb–Sn
  10. Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
  11. Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
  12. First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
  13. Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
  14. On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
  15. Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
  16. Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
  17. A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
  18. Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
  19. Short Communications
  20. Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
  21. DGM News
  22. DGM News
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110818/html
Scroll to top button