Home Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites

  • Pham Thi Thanh , Nguyen Thi Thanh Huyen , Nguyen Hai Yen and Nguyen Huy Dan
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The influence of composition and annealing temperature on the magnetic properties of (Nd0.5Pr0.5)6+xNb1.5Fe88.5xyB4+y (x = 0–6, y = 0–10) nanocomposites prepared via melt-spinning and subsequent annealing was investigated systematically to obtain their optimal compositions and fabrication conditions. The results show that each of the rare earth concentrations has an appropriate ratio of Fe/B to reveal the best performance of the material. The optimal annealing temperature decreases from 750 to 675°C when concentration of rare earth is increased from 6 to 12 at.%. Coercivity, Hc, and maximum energy product, (BH)max, of these nanocomposites can be regulated up to 14.5 kOe and 16 MGOe, respectively, by suitably choosing their composition.


* Correspondence address, Assoc. Prof. Dr. Nguyen Huy Dan, Institute of Materials ScienceVietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str. Caugiay, HanoiVietnam. Tel: +84-4-37567155, Fax: +84-4-37282064, E-mail:

References

[1] R.Coehoorn, D.B.de Mooij, J.P.W.B.Duchateau, K.H.J.Buchow: J. Phys.49 (1988) 669.Search in Google Scholar

[2] E.F.Kneller, R.Hawig: IEEE Trans. Magn.27 (1991) 3588. 10.1109/20.102931Search in Google Scholar

[3] T.Miyoshi, H.Kanekiyo, S.Hirosawa: IEEE Trans. Magn.41 (2005) 3865. 10.1109/TMAG.2005.854949Search in Google Scholar

[4] H.Xu, S.Y.Zhang, X.H.Tan, X.L.Hou, J.S.Ni: J. Appl. Phys.103 (2008) 07E117-1.Search in Google Scholar

[5] D.M.Thuy, N.H.Dan: J. Korean Phys. Soc.52 (2008) 1465. 10.3938/jkps.52.1465Search in Google Scholar

[6] C.Wang, W.C.Chang: J. Phys.: Conf. Series 266 (2011) 0120471. 10.1088/1742-6596/266/1/012047Search in Google Scholar

[7] W.Zhang, S.Zhang, A.Yan, H.Zhang, B.Shen: J. Mag. Mag. Mater.225 (2001) 389. 10.1016/S0304-8853(01)00015-4Search in Google Scholar

[8] N.D.The, N.Q.Hoa, S.K.Oh, S.C.Yu, H.D.Anh, L.V.Vu, N.Chau: J. Phys. D: Appl. Phys.40 (2007) 119. 10.1088/0022-3727/40/1/001Search in Google Scholar

[9] S.M.Hoque, M.A.HakimF.A.Khan, N.H.Dan: J. Mater. Sci.42 (2007) 9415. 10.1007/s10853-007-1884-3Search in Google Scholar

[10] P.T.T.Huyen, N.T.T.Huyen, N.H.Dan: Adv. Nat. Sci.8 (2007) 431.Search in Google Scholar

[11] N.H.Dan: J. Korean Phys. Soc.52 (2008) 1443. 10.3938/jkps.52.1443Search in Google Scholar

[12] N.H.Dan, D.M.Thuy, L.T.Hung, P.T.T.Huyen, N.T.T.Huyen, D.H.Manh, N.A.Tuan: Adv. Nat. Sci.10 (2009) 77.Search in Google Scholar

[13] N.M.Lam, N.T.T.Huyen, D.H.Manh, V.H.Ky, D.K.Tung, N.H.Dan: J. Phys.: Conference Series 187 (2009) 012076. 10.1088/1742-6596/187/1/012076Search in Google Scholar

[14] C.Y.You, X.K.Sun, W.Liu, B.Z.Cui, X.G.Zhao, D.Y.Geng, Z.D.Zhang: J. Phys. D: Appl. Phys.35 (2002) 943. 10.1088/0022-3727/35/10/301Search in Google Scholar

[15] N.J.Harrison, H.A.Davies, I.Todd: J. Appl. Phys.99 (2006) 08B504-1.Search in Google Scholar

[16] R.K.Murakami, H.R.Rechenberg, A.C.Neiva, F.P.Missell, V.Villas-Boas: J. Magn. Magn. Mater.320 (2008) 65. 10.1016/j.jmmm.2008.02.150Search in Google Scholar

[17] H.W.Chang, M.F.Shih, C.W.Chang, C.C.Hsieh, Y.K.Fang, W.C.Chang, A.C.Sun: J. Appl. Phys.103 (2008) 07E105-1.Search in Google Scholar

[18] H.W.Chang, C.H.Chen, C.W.Chang, C.C.Hsieh, Z.H.Guo, W.C.Chang: J. Appl. Phys.105 (2009) 07A704-1.Search in Google Scholar

[19] P.Y.Zhang, R.Hiergeist, M.Albrecht, K.F.Braun, S.Sievers, J.Lüdke, H.L.Ge: J. Appl. Phys.106 (2009) 0739041. 10.1063/1.3234399Search in Google Scholar

Received: 2011-8-8
Accepted: 2012-6-14
Published Online: 2013-05-31
Published in Print: 2012-12-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Effect of texture on grain growth in an interstitial-free steel sheet
  5. Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
  6. Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
  7. Modelling of three powder compaction laws for cold die pressing
  8. Surface tension and density of liquid Sn–Ag–Cu alloys
  9. Thermodynamics of liquid Au–Sb–Sn
  10. Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
  11. Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
  12. First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
  13. Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
  14. On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
  15. Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
  16. Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
  17. A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
  18. Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
  19. Short Communications
  20. Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
  21. DGM News
  22. DGM News
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110813/html
Scroll to top button