Home Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
Article
Licensed
Unlicensed Requires Authentication

Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling

  • Olga Fabrichnaya , Galina Savinykh , Tilo Zienert , Gerhard Schreiber and Hans J. Seifert
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

Sub-solidus phase relations in the ZrO2-Sm2O3-Y2O3 and Sm2O3-Al2O3-Y2O3 systems were experimentally studied at 1523-1873 K and thermodynamic databases for these systems were developed. Analysis of phase equilibria in the Sm2O3-Y2O3-Al2O3 system indicated that REAM phase (Sm,Y)4Al2O9 is not stable in the Sm2O3 rich-composition. Therefore, the stability limit of the Sm4Al2O9 phase was established experimentally and thermodynamic parameters of the Sm2O3-Al2O3 system were re-optimised. The eutectic melting in the Sm2O3-Y2O3-Al2O3 system was investigated using differential thermal analysis and scanning electron microscopy. The results obtained were used to assess the mixing parameter of the liquid phase. A new description of binary system was introduced into the database of the ZrO2-Sm2O3-Al2O3 system and phase diagrams were re-calculated. The obtained thermodynamic databases were combined with literature data for the ZrO2-Y2O3-Al2O3 system and a thermodynamic database for the ZrO2-Sm2O3-Y2O3-Al2O3 system was developed.


* Correspondence address, Dr. Olga Fabrichnaya, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany. Tel.: +49-3731-393156, Fax: +49-3731-393657, E-mail:

References

[1] C.G.Levi: Curr. Opinion Solid State Mater. Sci.8 (2004) 77. 10.1016/j.cossms.2004.03.009Search in Google Scholar

[2] R.Vassen, F.Traeger, D.Stoever: Int. J. Appl. Ceram. Technol.1 (2004) 351. 10.1111/j.1744-7402.2004.tb00186.xSearch in Google Scholar

[3] M.Matsumoto, H.Takayama, D.Yokoe, K.Mukai, H.Matsubara, Y.Kagiya, Y.Sugita: Scr. Mater.54 (2006) 2035. 10.1016/j.scriptamat.2006.03.015Search in Google Scholar

[4] R.Leckie, S.Kraemer, M.Ruehle, C.G.Levi: Acta Mater.53 (2005) 3281. 10.1016/j.actamat.2005.03.035Search in Google Scholar

[5] N.R.Rebollo, A.S.Gandhi, C.G.Levi, in: E.J. Opila, P. Hou, T. Maruyama, B. Pieraggi, M. McNallan, D. Shifler, E. Wuchina (Eds.), High Temperature Corrosion and Materials Chemistry IV, Electrochemical Society Proceedings, Vol. PV-2003-16, 2003, pp. 431.Search in Google Scholar

[6] K.A.Khor, J.Yang: J. Mat. Sci. Lett.16 (1997) 1002. 10.1023/A:1018597802063Search in Google Scholar

[7] Q.Xu, W.Pan, J.Wang, Ch.Wan, L.Qi, H.Mia: J. Am. Ceram. Soc.89 (2006) 340. 10.1111/j.1551-2916.2005.00667.xSearch in Google Scholar

[8] J.Wu, X.Wei, P.N.Padture, P.G.Klemens, M.Gell, E.Garcia, P.Miranzo, M.I.Osendi: J. Am. Ceram. Soc.85 (2002) 3031. 10.1111/j.1151-2916.2002.tb00574.xSearch in Google Scholar

[9] A.Rouanet: Rev. Int. Hautes Temper. Refract.8 (1971) 161.Search in Google Scholar

[10] O.Fabrichnaya, M.Zinkevich, F.Aldinger: Int. J. Mat. Res.98 (2007) 838. 10.3139/146.101539Search in Google Scholar

[11] O.Fabrichnaya, H.J.Seifert: J. Alloys Comp.475 (2009) 86.Search in Google Scholar

[12] S.M.Lakiza, L.M.Lopato: J. Am. Ceram. Soc.80 (1997) 893. 10.1111/j.1151-2916.1997.tb02919.xSearch in Google Scholar

[13] S.M.Lakiza, L.M.Lopato: J. Am. Ceram. Soc.89 (2006) 3516. 10.1111/j.1551-2916.2006.01263.xSearch in Google Scholar

[14] A.V.Shevchenko, B.S.Nigmanov, Z.A.Zaitseva, L.M.Lopato: Inorg. Mater.22 (1986) 681.Search in Google Scholar

[15] M.Zinkevich: Prog. Mater. Sci.52 (2007) 597. 10.1016/j.pmatsci.2006.09.002Search in Google Scholar

[16] O.Fabrichnaya, G.Savinykh, G.Schreiber, M.Dopita, H.J.Seifert: J. Alloys Comp.493 (2010) 263. 10.1016/j.jallcom.2009.12.076Search in Google Scholar

[17] http://www.bgmn.de.Search in Google Scholar

[18] L.Lutteroti: MAUD, CPD Newsletter (IUCr) N24 Dec. (2000).Search in Google Scholar

[19] FabrichnayaO., KriegelM.J., SeidelJ., SavinykhG., OgorodovaL.P., KiselevaI.A., SeifertH.J.: Thermochim. Acta526 (2011) 50. 10.1016/j.tca.2011.08.021Search in Google Scholar

[20] M.Hillert: J. Alloys Comp.320 (2011) 161. 10.1016/S0925-8388(00)01481-XSearch in Google Scholar

[21] O.Fabricnaya, G.Savinykh, G.Schreiber, H.J.Seifert: J. Phase Equilib. Diffus.32 (2011) 284. 10.1007/s11669-011-9903-0Search in Google Scholar

[22] Ch.Wang, M.Zinkevich, F.Aldinger: J. Am. Ceram. Soc.89 (2006) 3751. 10.1111/j.1551-2916.2006.01286.xSearch in Google Scholar

[23] B.Hallstedt: J. Am. Ceram. Soc.73 (1990) 15. 10.1111/j.1151-2916.1990.tb05083.xSearch in Google Scholar

[24] Ch.Wang, M.Zinkevich, F.Aldinger: J. Am. Ceram. Soc.90 (2007) 2210. 10.1111/j.1551-2916.2007.01692.xSearch in Google Scholar

[25] M.Mizuno, T.Yamada, T.Noguchi: Yogyo Kyokaishi85 (1977) 374. 10.2109/jcersj1950.85.984_374Search in Google Scholar

[26] P.P.Budnikov, V.I.Kushakovskii, V.S.Belevantsev: Acad Sci USSR, Dokl. Chem.165 (1965) 1177.Search in Google Scholar

[27] I.A.Bondar, N.A.Toropov: Bull. Acad. Sci. USSR, Div. Chem. Sci.2 (1966) 195. 10.1007/BF00856037Search in Google Scholar

Received: 2011-10-27
Accepted: 2012-5-2
Published Online: 2013-05-31
Published in Print: 2012-12-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Effect of texture on grain growth in an interstitial-free steel sheet
  5. Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
  6. Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
  7. Modelling of three powder compaction laws for cold die pressing
  8. Surface tension and density of liquid Sn–Ag–Cu alloys
  9. Thermodynamics of liquid Au–Sb–Sn
  10. Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
  11. Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
  12. First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
  13. Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
  14. On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
  15. Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
  16. Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
  17. A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
  18. Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
  19. Short Communications
  20. Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
  21. DGM News
  22. DGM News
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110794/html
Scroll to top button