Effect of texture on grain growth in an interstitial-free steel sheet
-
Moo-Young Huh
, Luis A. Barrales-Mora and Olaf Engler
Abstract
The effect of crystallographic texture on grain growth was studied in two samples from an interstitial-free steel sheet with two different primary recrystallization textures, one with a pronounced {111} fiber texture and the other with an almost random texture. Upon grain growth annealing, the sample with the random texture showed slow continuous grain growth. In the strongly textured material discontinuous grain growth prevailed at a higher growth rate. The effect of texture on the rate of grain growth is discussed in terms of the motion of the grain boundary triple junctions in the two samples with different distributions of grain-to-grain misorientations. Numerical simulations with a 2D vertex model confirmed the influence of the triple junctions on the development of microstructure and texture observed during grain growth in the two differently textured steel samples.
References
[1] F.J.Humphreys: Acta Mater.45 (1997) 4231–4240. DOI: 10.1016/S1359-6454(97)00070-0Search in Google Scholar
[2] F.J.Humphreys: Acta Mater.45 (1997) 5031–5039. DOI: 10.1016/S1359-6454(97)00173-0Search in Google Scholar
[3] J.H.Driver: ScriptaMater.51 (2004) 819–823. DOI: 10.1016/j.scriptamat.2004.05.014Search in Google Scholar
[4] M.Ferry,N.E.Hamilton,F.J.Humphreys: Acta Mater.53 (2005) 1097–1109. DOI: 10.1016/j.actamat.2004.11.006Search in Google Scholar
[5] H.G.Kang,J.P.Lee,M.Y.Huh,O.Engler: Mater. Sei. Eng. A.486 (2008) 470–480. DOI: 10.1016/j.msea.2007.09.048Search in Google Scholar
[6] J.D.Verhoeven: Fundamentals of Physical Metallurgy, Wiley, New York (1975).Search in Google Scholar
[7] F.J.Humphreys,M.Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Science, New York (1995).Search in Google Scholar
[8] D.A.Porter,K.E.Easterling,M.Y.Sherif: Phase Transformations in Metals and Alloys, 3rd ed, CRC Press, London (2009).Search in Google Scholar
[9] W.T.Read,W.Shockley: Phys. Rev.78 (1950) 275–289. DOI: 10.1103/PhysRev.78.275Search in Google Scholar
[10] Y.Huang,F.J.Humphreys: Acta Metall.48 (2000) 2017–2030.Search in Google Scholar
[11] A.Kazaryan,Y.Wang,S.A.Dregia,B.R.Patton: Acta Mater.50 (2002) 2491–2502. DOI: 10.1016/S1359-6454(02)00078-2Search in Google Scholar
[12] N.Ma,A.Kazaryan,S.A.Dregia,Y.Wang: Acta Mater.52 (2004) 3869–3979. DOI: 10.1016/j.actamat.2004.05.001Search in Google Scholar
[13] J.Gruber,H.M.Miller,T.D.Hoffmann,G.S.Rohrer,A.D.Roll-ett: Acta Mater.57 (2009) 6102–6112. DOI: 10.1016/j.actamat.2009.08.036Search in Google Scholar
[14] E.A.Holm,GN.Hassold,M.A.Miodownik: Acta Mater.49 (2001) 2981–2991. DOI: 10.1016/S1359-6454(01)00207-5Search in Google Scholar
[15] K.Mehnert,P.Klimanek: Scripta Mater.35 (1996) 699–704. DOI: 10.1016/1359-6462(96)00201-1Search in Google Scholar
[16] V.YNovikov: Acta Metall.47 (1999) 1935–1943.Search in Google Scholar
[17] O.M.Ivasishin,S.V.Shevchenko,N.L.Vasiliev,S.L.Semiatin: Acta Mater.51 (2003) 1019–1034. DOI: 10.1016/S1359-6454(02)00505-0Search in Google Scholar
[18] J.Gruber,A.D.Rollett,G.S.Rohrer: Acta Mater.58 (2010) 14–19. DOI: 10.1016/j.actamat.2009.08.032Search in Google Scholar
[19] GAbbruzzese,K.Lücke: Acta Metall.34 (1986) 905–914 DOI: 10.1016/0001-6160(86)90064-7Search in Google Scholar
[20] H.Eichelkraut,GAbbruzzese,K.Lücke: Acta Metall.36 (1988) 55–68. DOI: 10.1016/0001-6160(88)90028-4Search in Google Scholar
[21] E.Fjeldberg,K.Marthinsen: Comput. Mater. Sei.48 (2010) 267–281.DOI: 10.1016/j.commatsci.2010.01.007Search in Google Scholar
[22] G.S.Grest,D.J.Srolovitz,M.P.Anderson: Acta Metall.33 (1985) 509–520. DOI: 10.1016/0001-6160(85)90093-8Search in Google Scholar
[23] P.R.Rios: Scripta Mater.38 (1998) 1359–1364. DOI: 10.1016/S1359-6462(98)00052-9Search in Google Scholar
[24] P.R.Rios,GGottstein: Acta Mater.49 (2001) 2511–2518. DOI: 10.1016/S1359-6454(01)00143-4Search in Google Scholar
[25] GGottstein,Y.Ma,L.S.Shvindlerman: Acta Mater.53 (2005) 1535–1544. DOI: 10.1016/j.actamat.2004.12.006Search in Google Scholar
[26] GGottstein,L.S.Shvindlerman,B.Zhao: Scripta Mater.62 (2010) 914–917. DOI: 10.1016/j.scriptamat.2010.03.017Search in Google Scholar
[27] D.Mattissen,D.A.Molodov,L.S.Shvindlerman,GGottstein: Acta Mater.53 (2005) 2049–2057. DOI: 10.1016/j.actamat.2005.01.016Search in Google Scholar
[28] GGottstein,A.H.King,L.S.Shvindlerman: Acta Mater.48 (2000) 397–403. DOI: 10.1016/S1359-6454(99)00373-0Search in Google Scholar
[29] U.Czubayko,V.GSursaeva,GGottstein,L.S.Shvindlerman: Acta Mater.46 (1998) 5863–5871. DOI: 10.1016/S1359-6454(98)00241-9Search in Google Scholar
[30] GGottstein,L.S.Shvindlerman: Acta Mater.50 (2002) 703–713. DOI: 10.1016/S1359-6454(01)00391-3Search in Google Scholar
[31] N.Ono,KKimura,T.Watanabe: Acta Mater.47 (1998) 1007–1017. DOI: 10.1016/S1359-6454(98)00391-7Search in Google Scholar
[32] SJ.Dillon,G.S.Rohrer: Acta Mater.57 (2009) 1–7. DOI: 10.1016/j.actamat.2008.08.062Search in Google Scholar
[33] N.Bozzolo,N.Dewobroto,T.Grosdidier,F.Wagner: Mater. Sei. Eng. A.397 (2005) 346–355. DOI: 10.1016/j.msea.2005.02.049Search in Google Scholar
[34] O.V.Mishin,G.Gottstein: Mater. Sei. Eng. A.A249 (1998) 71–78. DOI: 10.1016/S0921-5093(98)00622-4Search in Google Scholar
[35] GH.Zahid,Y.Huang,P.B.Prangnell: Acta Mater.57 (2009) 3509–3521. DOI: 10.1016/j.actamat.2009.04.010Search in Google Scholar
[36] M.T.Perez-Prado,O.A.Ruano: Scripta Mater.48 (2003) 59–64. DOI: 10.1016/S1359-6462(02)00346-9Search in Google Scholar
[37] JJ.Nah,H.GKang,M.Y.Huh,O.Engler: Scripta Mater.58 (2008) 500–503. DOI: 10.1016/j.scriptamat.2007.10.049Search in Google Scholar
[38] Y.B.Pyon,K.M.Lee,M.Y.Huh,O.Engler: Int. J. Mat. Res.101 (2010) 1029–1036. DOI: 10.3139/146.110373Search in Google Scholar
[39] K.M.Lee,H.G.Kang,M.Y.Huh,O.Engler: Met. Mater. Int.16 (2010) 851–856. DOI: 10.1007/sl2540-010-1025-4Search in Google Scholar
[40] R.Saha,R.K.Ray,D.Bhattacharjee: Scripta Mater.57 (2007) 257–260. DOI: 10.1016/j.scriptamat.2007.03.055Search in Google Scholar
[41] O.Engler,V.Rändle: Introduction to Texture Analysis: Macro-texture, Microtexture and Orientation Mapping, CRC Press, Boca Raton, Florida (2010).Search in Google Scholar
[42] HJ.Bunge: Texture Analysis in Materials Science, Butterworths, London (1982).Search in Google Scholar
[43] E.J.Shin,B.S.Seong,C.H.Lee,HJ.Kang,M.Y.Huh: Steel Res. Int.74(2003), 356–364.10.1002/srin.200300198Search in Google Scholar
[44] E.Shin,B.S.Seong,HJ.Kang,M.Y.Huh: Z. Metallkd.94 (2003) 1234–1240.10.3139/146.031234Search in Google Scholar
[45] U.V.Schlippenbach,F.Emren,K.Lücke: Acta Metall.34 (1986) 1289–1301. DOI: 10.1016/0001-6160(86)90015-5Search in Google Scholar
[46] M.Y.Huh,Y.S.Cho,J.S.Kim,O.Engler: Z. Metallkd.90 (1999) 124–131.Search in Google Scholar
[47] M.Y.Huh,H.C.Kim,O.Engler: Steel Res. Int.71 (2000) 239–248.10.1002/srin.200001223Search in Google Scholar
[48] J.K.Mackenzie: Biometrika45 (1958) 229–240.10.1093/biomet/45.1-2.229Search in Google Scholar
[49] L.A.Barrales-Mora,V.Mohles,GGottstein,L.S.Shvindlerman, in:D.U.Furrer,S.L.Semiatin (Eds.), Fundamentals of Modeling for Metals Processing, ASM Handbook, Vol. 22, ASM International, Ohio (2009).Search in Google Scholar
[50] L.A.Barrales-Mora: Math. Comput. Simulat.80 (2010) 1411–1427. DOI: 10.1016/j.matcom.2009.08.005Search in Google Scholar
[51] L.A.Barrales-Mora,V.Mohles,P.J.Konijnenberg,D.A.Molo-dov: Comp. Mat. Sei.39 (2007) 160–165. DOI: 10.1016/j.commatsci.2006.01.026Search in Google Scholar
[52] W.T.Read,W.Shockley: Phys. Rev.78 (1950) 275–289. DOI: 10.1103/PhysRev.78.275Search in Google Scholar
[53] C.Schäfer: Recrystallization Modeling Considering Second-Phase Particles, Ph.D. Thesis, Cuvillier Verlag, Göttingen, Germany (2011).Search in Google Scholar
[54] C.Zener, private communication to C.S. Smith, Trans. Am. Inst. Min. Eng.175 (1949) 15–51.Search in Google Scholar
[55] P.R.Rios,K.Lücke: Scripta Mater.44 (2001) 2471–2475. DOI: 10.1016/S1359-6462(01)00923-XSearch in Google Scholar
[56] P.R.Rios: Acta Mater.45 (1997) 1785–1789. DOI: 10.1016/S1359-6454(96)00284-4Search in Google Scholar
[57] P.R.Rios,G.S.Fonseca: Scripta Mater.52 (2005) 893–897. DOI: 10.1016/j.scriptamat.2005.01.001Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of texture on grain growth in an interstitial-free steel sheet
- Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
- Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
- Modelling of three powder compaction laws for cold die pressing
- Surface tension and density of liquid Sn–Ag–Cu alloys
- Thermodynamics of liquid Au–Sb–Sn
- Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
- Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
- First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
- Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
- On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
- Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
- Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
- A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
- Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
- Short Communications
- Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of texture on grain growth in an interstitial-free steel sheet
- Nanoindentation of pseudoelastic NiTi containing Ni4Ti3 precipitates
- Isochronal annealing of a deformed Fe-7.5 mass.% Si-steel
- Modelling of three powder compaction laws for cold die pressing
- Surface tension and density of liquid Sn–Ag–Cu alloys
- Thermodynamics of liquid Au–Sb–Sn
- Phase relations in the ZrO2-Sm2O3-Y2O3-Al2O3 system: experimental investigation and thermodynamic modelling
- Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts
- First and second differentials of the ultrasonic parameter as an effective tool to identify phase transitions in R1-xAxMnO3 perovskites
- Surface oxide layer formation on Au-Pt-Pd-Si alloys for dental resin restorations
- On the high temperature stability of γ-Al2O3/Ti0.33Al0.67N coated WC–Co cutting inserts
- Optimizing composition for (Nd, Pr)–Nb–Fe–B hard magnetic nanocomposites
- Simple ionic-liquid assisted method for preparation of Cd1-xZnxS nanoparticles with improved photocatalytic activity
- A low-cost route for synthesizing tungsten disulfide film composites from abundant sprayed oxides: Technique and characterization
- Anodic behavior of Al–Zn–In sacrificial anodes at different concentration of zinc and indium
- Short Communications
- Effect of molybdenum addition on fracture toughness and hardness of Fe2B in Fe–B–C cast alloy
- DGM News
- DGM News