Home Technology Combustion synthesis and characterization of bulk nanostructured Ni50Al17Fe33 alloy
Article
Licensed
Unlicensed Requires Authentication

Combustion synthesis and characterization of bulk nanostructured Ni50Al17Fe33 alloy

  • Jiqiang Ma , Jun Yang , Xinghua Zhang , Qinling Bi , Licai Fu , Yonghai Kang and Weimin Liu
Published/Copyright: June 11, 2013

Abstract

A bulk nanostructured Ni50Al17Fe33 alloy was produced by combustion synthesis associated with rapid solidification. The microstructure and mechanical properties of the as-fabricated material were investigated by means of scanning electron microscopy, X-ray diffraction, and mechanical tests. The Ni50Al17Fe33 alloy was composed of eutectic matrix and precipitated phase. The eutectic matrix consisted of 30–50 nm globular γ′-(Ni,Fe)3Al and 5–10 nm γ-Ni(Fe) boundary. The precipitate was comprised of 100–150 nm γ′-(Ni,Fe)3Al, γ-Fe, and α-Fe solid solution phases. The nanostructured Ni50Al17Fe33 alloy exhibited simultaneously high yield stress (about 900 MPa), high fracture strength (over 3860 MPa), and good ductility (over 75%) in compression.


* Correspondence address Dr. Jun Yang State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of Sciences, Lanzhou, China Tel.: +86 931 4968193 Fax: +86 931 8277088 E-mail:

References

[1] E.Hosseini, M.Kazeminezhad: Mater. Sci. Eng. A526 (2009) 219. 10.1016/j.msea.2009.07.028Search in Google Scholar

[2] K.Kumar, H.Van Swygenhoven, S.Suresh: Acta Mater.51 (2003) 5743. 10.1016/j.actamat.2003.08.032Search in Google Scholar

[3] M.Meyers, A.Mishra, D.Benson: Prog. Mater. Sci.51 (2006) 427. 10.1016/j.pmatsci.2005.08.003Search in Google Scholar

[4] Y.Wang, M.Chen, F.Zhou, E.Ma: Nature419 (2002) 912. PMid: 12410306; 10.1038/nature01133Search in Google Scholar

[5] Y.S.Yang, J.G.Bae, C.G.Park: Mater. Sci. Eng. A508 (2009) 148. 10.1016/j.msea.2008.12.036Search in Google Scholar

[6] I.Alexandrov, R.Valiev: Scr. Mater.44 (2001) 1605. 10.1016/S1359-6462(01)00783-7Search in Google Scholar

[7] N.Tao, K.Lu: J. Mater. Sci. Technol.23 (2007) 771. 10.1179/174328407X185802Search in Google Scholar

[8] L.Fu, J.Yang, Q.Bi, W.Liu: Adv. Eng. Mater.11 (2009) 194. 10.1002/adem.200800178Search in Google Scholar

[9] P.La, Y.Wei, R.Lv, Y.Zhao, Y.Yang: Mater. Sci. Eng. A527 (2010) 2313. 10.1016/j.msea.2009.12.043Search in Google Scholar

[10] P.La, J.Yang, D.Cockayne, W.Liu, Q.Xue, Y.Li: Adv. Mater.18 (2006) 733. 10.1002/adma.200501684Search in Google Scholar

[11] L.Li, Q.Bi, J.Yang, L.Fu, L.Wang, S.Wang, W.Liu: Scr. Mater.59 (2008) 587. 10.1016/j.scriptamat.2008.05.008Search in Google Scholar

[12] J.Yang, J.Ma, W.Liu, Q.Bi, Q.Xue: Scr. Mater.58 (2008) 1074. 10.1016/j.scriptamat.2008.02.001Search in Google Scholar

[13] J.Ma, J.Yang, Q.Bi, W.Liu: Acta Metall. Sinica23 (2010) 50.Search in Google Scholar

[14] N.Stoloff: Int. Mater. Rev.34 (1989) 153.10.1179/imr.1989.34.1.153Search in Google Scholar

[15] J.Bonneville, C.Coupeau: Mater. Sci. Eng. A483 (2008) 87. 10.1016/j.msea.2006.12.158Search in Google Scholar

[16] H.Hou, Y.Zhao: Mater. Sci. Eng. A499 (2009) 204. 10.1016/j.msea.2007.11.140Search in Google Scholar

[17] P.Peng, D.W.Zhou, J.S.Liu, R.Yang, Z.Q.Hu: Mater. Sci. Eng. A416 (2006) 169. 10.1016/j.msea.2005.10.019Search in Google Scholar

[18] Q.Xie, N.Chen: Acta Metall. Sinica7 (1994) 220.Search in Google Scholar

[19] MSIT®:Al-Fe-Ni, in: G.Effenberg, S.Ilyenko (Eds.), Light Metal Ternary Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, Vol. 11A2, Springer-Verlag, (2005).Search in Google Scholar

[20] W.Kurz, B.Giovanola, R.Trivedi: Acta Metall.34 (1986) 823. 10.1016/0001-6160(86)90056-8Search in Google Scholar

[21] H.Hu: Metal Solidification Principle, China Machine Press, Beijing (2000).Search in Google Scholar

[22] G.Mi, Z.Li, S.Tian, X.Zhao, Z.Luo, S.Zeng, Q.Li: J. M. Sci. & Technol.14 (1998) 143.Search in Google Scholar

Received: 2011-3-2
Accepted: 2012-1-4
Published Online: 2013-06-11
Published in Print: 2012-07-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Diffusivities and atomic mobilities in Cu-rich fcc Al–Cu–Mn alloys
  5. Phase transformations in non-isothermally annealed as-cast and cold-rolled AlMnScZr alloys
  6. High-temperature deformation behavior and thermal properties of an Ni30Co17Fe53 alloy
  7. Microstructural and mechanical properties of dual-phase steels welded using GMAW with solid and flux-cored welding wires
  8. Microstructure – wear performance relationship of hypoeutectic 15% Cr-2% Mo white iron
  9. The enhancement of wear properties of squeeze-cast A356 composites reinforced with B4C particulates
  10. Phase diagram of the Al–Dy–Zr ternary system at 773 K
  11. Calorimetric investigations of liquid gold–antimony–tin alloys
  12. Combustion synthesis and characterization of bulk nanostructured Ni50Al17Fe33 alloy
  13. Effect of sand blasting on structural, thermal, and mechanical properties of Zr58.3Cu18.8Al14.6Ni8.3 bulk metallic glass
  14. Studies of dynamic mass transfer at the slag–metal interface – Interfacial velocity measurements
  15. Structural and optical investigation of gadolinia-doped ceria powders prepared by polymer complex solution method
  16. Adsorption of bovine serum albumin onto titanium dioxide nanotube arrays
  17. CNT-based displacement sensor
  18. Non-covalent assembly of hybrid nanostructures of gold and palladium nanoparticles with carbon nanotubes
  19. Effect of solid content on performance of conductive silver paste for crystalline silicon solar cells
  20. Effect of inhomogeneous size and shape of graphite particles on the in-plane electrical conductivity of PP/G/CB composites
  21. The durability of fired brick incorporating textile factory waste ash and basaltic pumice
  22. DGM News
  23. DGM News
Downloaded on 21.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110709/html
Scroll to top button