Home Technology Calorimetric investigations of liquid gold–antimony–tin alloys
Article
Licensed
Unlicensed Requires Authentication

Calorimetric investigations of liquid gold–antimony–tin alloys

  • Michael Hindler and Adolf Mikula
Published/Copyright: June 11, 2013

Abstract

Calorimetric investigations have been done on the Au–Sb–Sn system with a Calvet-type micro-calorimeter. The partial and integral enthalpies of mixing in the ternary system were determined at six cross-sections at 873 K. Three additional cross-sections were measured at 1073 K to check if there are any temperature dependencies. No temperature dependence could be found. The substitutional solution model of Redlich–Kister–Muggianu was used for a least-square fit of the experimental data in order to get an analytical expression for the integral enthalpy of mixing. The isoenthalpy curves for the Au–Sb–Sn system were constructed at 873 K. The Chou model was used to calculate the enthalpies of mixing for the ternary system. The calculated values were then compared with the experimental data. The calculated data are in very good agreement with the experimentally determined values.


* Correspondence address Dr. Michael Hindler Institute of Inorganic chemistry–Materials chemistryUniversity of ViennaA-1090 Vienna, Austria Tel.: +436642009637 Fax: +43142779529 E-mail:

References

[1] H.A.Pearson, D.J.Schonfeld, in: C.D.Rudolph (Ed.), Rudolph´s Pediatrics, 21st Edition, McGraw-Hill, New York (2003).Search in Google Scholar

[2] J.Hwang: Solder materials: in SMT14 (2000).Search in Google Scholar

[3] J.Kloeser, K.Heinricht, K.Kutzner, E.Jung, A.Ostmann, E.Zakel, H.Reichl: Proc. Electron. Compon. Technol. Conf. 47 (1997) 254.Search in Google Scholar

[4] W.Sheel: Optische Aufbau- und Vebindungstechnik in der elektronischen Baugruppenfertigung, Verlag Markus A. Detert, Templin/Uckermark (2002).Search in Google Scholar

[5] A.Prince, G.V.Raynor, D.S.Evans, in: Phase Diagrams of Ternary Gold Alloys, The Institute of Metals, London (1990) 411.Search in Google Scholar

[6] M.Hino, T.Azakami, M.Kameda: Nippon Kinzoku Gakkaishi39 (1975) 1175.Search in Google Scholar

[7] K.Kameda, T.Azakami, M.Kameda: Nippon Kinzoku Gakkaishi38 (1974) 434.Search in Google Scholar

[8] H.Okamoto, T.B.Massalski: Bull. Alloy Phase Diagrams5 (1984) 166. 10.1007/BF02868954Search in Google Scholar

[9] E.Hayer, R.Castanet: Z. Metallkd.86 (1995) 8.Search in Google Scholar

[10] P.Y.Chevalier: Thermochim. Acta155 (1989) 211. 10.1016/0040-6031(89)87147-3Search in Google Scholar

[11] W.Biltz, G.Rohlffs, H.U.v.Vogel: Z. Anorg. Allg. Chem.220 (1934) 113. 10.1002/zaac.19342200202Search in Google Scholar

[12] A.K.Jena, M.B.Bever: Trans. Met. Soc. AIME242 (1968) 1453.Search in Google Scholar

[13] O.J.Kleppa: J. Phys. Chem.60 (1956) 842. 10.1021/j150541a003Search in Google Scholar

[14] K.Itagaki: Nippon Kinzoku Gakkaishi40 (1976) 1038.Search in Google Scholar

[15] P.Anres, H.Bros, R.Castanet: Intermetallics2 (1994) 285. 10.1016/0966-9795(94)90014-0Search in Google Scholar

[16] M.Hindler: PhD thesis, University of Vienna (2011) 85.Search in Google Scholar

[17] A.K.Jena, J.S.L.Leach: Acta Metall.14 (1966) 1595. 10.1016/0001-6160(66)90180-5Search in Google Scholar

[18] K.Itagaki, A.Yazawa: Trans. Jpn. Inst. Met.16 (1975) 679.Search in Google Scholar

[19] J.Rakotomavo, M.Gaune-Escard, J.P.Bros, P.Gaune: Ber. Bunsen-Ges. Phys. Chem.88 (1984) 663.Search in Google Scholar

[20] M.J.Pool, B.Predel, E.Schultheiss: Thermochim. Acta28 (1979) 349. 10.1016/0040-6031(79)85138-2Search in Google Scholar

[21] E.Hayer, K.L.Komarek, J.P.Bros, M.Gaune-Escard: Z. Metallkd.72 (1981) 109.Search in Google Scholar

[22] A.Watson, G.Borzone, N.Parodi, G.Cacciamani: Thermochim. Acta510 (2010) 24. 10.1016/j.tca.2010.06.018Search in Google Scholar

[23] O.J.Kleppa: J. Am. Chem. Soc.72 (1950) 3346. 10.1021/ja01164a006Search in Google Scholar

[24] C.Petot, G.Petot-Ervas, M.Rigaud: Phys. Chem. Liquids3 (1972) 13. 10.1080/00319107208084085Search in Google Scholar

[25] K.Kameda, S.Sakairi, Y.Yoshida: Nippon Kinzoku Gakkaishi41 (1977) 950.Search in Google Scholar

[26] S.M.Howard, J.P.Hager: Metall. Trans. B (1978) 51.10.1007/BF02822671Search in Google Scholar

[27] P.Y.Chevalier: Thermochim. Acta130 (1988) 1. 10.1016/0040-6031(88)87045-XSearch in Google Scholar

[28] V.Vassiliev, M.Lelaurain, J.Hertz: J. Alloys Compd.247 (1997) 223. 10.1016/S0925-8388(96)02654-0Search in Google Scholar

[29] V.Vassiliev, Y.Feutelais, M.Sghaier, B.Legendre: J. Alloys Compd.314 (2001) 198. 10.1016/S0925-8388(00)01243-3Search in Google Scholar

[30] B.Jonsson, J.Agren: Mater. Sci. Technol.2 (1986) 913.Search in Google Scholar

[31] B.Predel, W.Schwermann: J. Inst. Met.99 (1971) 169.Search in Google Scholar

[32] G.Humpston: Ph.D. Thesis, Brunel University (1985) 65.Search in Google Scholar

[33] S.-W.Chen, C.-C.Chen, W.Gierlotka, A.-R.Zi, P.-Y.Chen, H.-J.Wu: J. Electron. Mater.37 (2008) 992.Search in Google Scholar

[34] A.A.El-Daly, Y.Swilem, A.E.Hammad: J. Alloys Compd.471 (2009) 98. 10.1016/j.jallcom.2008.03.097Search in Google Scholar

[35] F.Sommer, R.Lueck, N.Rupf-Bolz, B.Predel: Mater. Res. Bull.18 (1983) 621. 10.1016/0025-5408(83)90221-0Search in Google Scholar

[36] K.Schubert, H.Breimer, R.Gohle: Z. Metallkd.50 (1959) 146.Search in Google Scholar

[37] O.J.Kleppa: J. Phys. Chem.60 (1956) 842. 10.1021/j150541a003Search in Google Scholar

[38] J.H.Kim, S.W.Jeong, H.M.Lee: J. Electron. Mater.31 (2002) 557. 10.1007/s11664-002-0125-4Search in Google Scholar

[39] E.Hayer, F.Gehringer, M.Gaune-Escard, J.P.Bros: Calorim. Anal. Therm.18 (1987) 317.Search in Google Scholar

[40] H.Flandorfer, F.Gehringer, E.Hayer: Thermochim. Acta382 (2002) 77. 10.1016/S0040-6031(01)00739-0Search in Google Scholar

[41] A.T.Dinsdale: CALPHAD15 (1991) 317. 10.1016/0364-5916(91)90030-NSearch in Google Scholar

[42] K.-C.Chou, S.-K.Wei: Metall. Mater. Trans. B28 (1997) 439. 10.1007/s11663-997-0110-7Search in Google Scholar

Received: 2011-2-21
Accepted: 2011-12-7
Published Online: 2013-06-11
Published in Print: 2012-07-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Diffusivities and atomic mobilities in Cu-rich fcc Al–Cu–Mn alloys
  5. Phase transformations in non-isothermally annealed as-cast and cold-rolled AlMnScZr alloys
  6. High-temperature deformation behavior and thermal properties of an Ni30Co17Fe53 alloy
  7. Microstructural and mechanical properties of dual-phase steels welded using GMAW with solid and flux-cored welding wires
  8. Microstructure – wear performance relationship of hypoeutectic 15% Cr-2% Mo white iron
  9. The enhancement of wear properties of squeeze-cast A356 composites reinforced with B4C particulates
  10. Phase diagram of the Al–Dy–Zr ternary system at 773 K
  11. Calorimetric investigations of liquid gold–antimony–tin alloys
  12. Combustion synthesis and characterization of bulk nanostructured Ni50Al17Fe33 alloy
  13. Effect of sand blasting on structural, thermal, and mechanical properties of Zr58.3Cu18.8Al14.6Ni8.3 bulk metallic glass
  14. Studies of dynamic mass transfer at the slag–metal interface – Interfacial velocity measurements
  15. Structural and optical investigation of gadolinia-doped ceria powders prepared by polymer complex solution method
  16. Adsorption of bovine serum albumin onto titanium dioxide nanotube arrays
  17. CNT-based displacement sensor
  18. Non-covalent assembly of hybrid nanostructures of gold and palladium nanoparticles with carbon nanotubes
  19. Effect of solid content on performance of conductive silver paste for crystalline silicon solar cells
  20. Effect of inhomogeneous size and shape of graphite particles on the in-plane electrical conductivity of PP/G/CB composites
  21. The durability of fired brick incorporating textile factory waste ash and basaltic pumice
  22. DGM News
  23. DGM News
Downloaded on 21.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110694/html
Scroll to top button