Home Technology Non-covalent assembly of hybrid nanostructures of gold and palladium nanoparticles with carbon nanotubes
Article
Licensed
Unlicensed Requires Authentication

Non-covalent assembly of hybrid nanostructures of gold and palladium nanoparticles with carbon nanotubes

  • Rodrigo Segura del Río
Published/Copyright: June 11, 2013

Abstract

Hybrid nanostructures were prepared by mixing gold and palladium nanoparticles with multi- and single-walled carbon nanotubes. The approach to prepare these nanohybrid implies the interaction of long hydrocarbon chains chemisorbed at the nanoparticles surface and the graphitic walls of nanotubes. Transmission electron microscopy results show the efficiency of this simple method to assemble these nanostructures. The electron microscopy images show that nanoparticles are effectively absorbed on the nanotube surfaces homogeneously but without any particular order. These nanostructures have proven to be stable after a moderate ultrasonic treatment.


* Correspondence address Dr. Rodrigo Segura del Río Avenida Gran Bretaña 1111, Valparaíso, Chile Tel.: +56322508199 Fax: +56322508062 E-mail:

References

[1] T.W.Odom, J.Huang, P.Kim, C.M.Lieber: Nature391 (1998) 62.Search in Google Scholar

[2] J.C.Meyer, A.K.Geim, M.I.Katsnelson, K.S.Novoselov, T.J.Booth, S.Roth: Nature446 (2007) 60.Search in Google Scholar

[3] W.Wang, P.Ciselli, E.Kuznetsov, T.Peijs, A.H.Barber: Phil. Trans. Roy. Soc. A366 (2008) 1613.Search in Google Scholar

[4] J.P.Tessonnier, L.Pesanta, G.Ehret, M.J.Ledouxa, C.Pham-Huu: Appl. Catal. A-Gen.288 (2005) 203.Search in Google Scholar

[5] X.Ma, X.Li, N.Lun, S.Wen: Mater. Chem. Phys.97 (2006) 351.Search in Google Scholar

[6] I.Sayago, E.Terrado, E.Lafuente, M.C.Horrillo, W.K.Maser, A.M.Benito, R.Navarro, E.P.Urriolabeitia, M.T.Martinez, J.Gutierrez: Synthetic Metals148 (2005) 15.Search in Google Scholar

[7] M.K.Kumar, S.Ramaprabhu: Int. J. Hydrogen Energy32 (2007) 2518.Search in Google Scholar

[8] S.H.Lim, J.Wei, J.Lin: Chem. Phys. Lett.400 (2004) 578.Search in Google Scholar

[9] D.J.Guo, H.L.Li: J. Colloid Interf. Sci.286 (2005) 274.Search in Google Scholar

[10] L.Zhu, G.Lu, J.Chen: J. Heat Trans. T-Asme130 (2008) 44502.Search in Google Scholar

[11] T.Sainsbury, J.Stolarczyk, D.Fitzmaurice: J. Phys. Chem. B109 (2005) 16310.Search in Google Scholar

[12] M.S.Raghuveer, S.Agarwal, N.Bishop, G.Ramanath: Chem. Mater.18 (2006) 1390.Search in Google Scholar

[13] J.Hu, J.Shi, S.Li, Y.Qin, Z.X.Guo, Y.Song, D.Zhuo: Chem. Phys. Lett.401 (2005) 352.Search in Google Scholar

[14] B.Kim, W.M.Sigmund: Langmuir20 (2004) 8239.Search in Google Scholar

[15] Y.Y.Ou, M.H.Huang: J. Phys. Chem. B110 (2006) 2031.Search in Google Scholar

[16] A.Tello, G.Cárdenas, P.Häberle, R.A.Segura: Carbon46 (2008) 884.Search in Google Scholar

[17] X.Li, Y.Liu, L.Fu, L.Cao, D.Wei, G.Yu, D.Zhu: Carbon44 (2006) 3139.Search in Google Scholar

[18] A.Khaled, S.Guo, F.Li, P.Guo: Nano Lett.5 (2005) 1797.Search in Google Scholar

[19] D.Guo, H.Li: Electrochem. Commun.6 (2004) 999.Search in Google Scholar

[20] S.Mubeen, T.Zhang, B.Yoo, M.Deshusses, N.Myung: J. Phys. Chem. C111 (2007) 6321.Search in Google Scholar

[21] M.Krishna Kumar, S.Ramaprabhu: Int. J. Hydrogen Energy32 (2007) 2518.Search in Google Scholar

[22] E.Lorençon, A.S.Ferlauto, S.de Oliveira, D.R.Miquita, R.R.Resende, R.G.Lacerda, L.O.Ladeira: Appl. Mater. Interf.1 (2009) 2104.Search in Google Scholar

[23] Y.Lin, X.Cui, X.Ye: Electrochem. Commun.7 (2005) 267.Search in Google Scholar

[24] P.Fortina, L.J.Kricka, D.J.Graves, J.Park, T.Hyslop, F.Tam, N.Halas, S.Surrey, S.A.Waldman: Trends in Biotechnology25 (2007) 145.Search in Google Scholar

[25] G.Gao, D.Guo, C.Wang, H.Li: Electrochem. Commun.9 (2007) 1582.Search in Google Scholar

[26] L.Guczi, G.Stefler, O.Geszti, Z.Koppány, Z.Kónya, É.Molnár, M.Urbán, I.Kiricsi: J. Catal.244 (2006) 24.Search in Google Scholar

[27] X.Ma, Y.Cai, N.Lun, Q.Ao, S.Li, F.Li, S.Wen: Mater. Lett.57 (2003) 2879.Search in Google Scholar

[28] J.Lee, K.Liang, K.Ana, Y.Lee: Synth. Metals150 (2005) 153.Search in Google Scholar

[29] R.Hull, L.Li, Y.Xing, C.Chusuei: Chem. Mater.18 (2006) 1780.Search in Google Scholar

[30] V.Tzitzios, V.Georgakilas, E.Oikonomou, M.Karakassides, D.Petridis: Carbon44 (2006) 848.Search in Google Scholar

[31] M.Toebes, M.van der Lee, L.Tang, M.Huis int Veld, J.Bitter, A.van Dillen, K.P.de Jong: J. Phys. Chem. B108 (2004) 11611.Search in Google Scholar

[32] R.Segura, A.Tello, G.Cardenas, P.Häberle: Phys. Stat. Sol. (a)204 (2007) 513.Search in Google Scholar

[33] K.Balasubramanian, M.Burghard: Small1 (2005) 180.Search in Google Scholar

[34] K.Niesz, A.Siska, I.Vesselényi, K.Hernadi, D.Méhn, G.Galbács, Z.Kónya, I.Kiricsi: Catal. Today76 (2002) 3.Search in Google Scholar

[35] G.Cárdenas, R.A.Segura, J.Reyes-Gasga: Colloid Polym. Sci.282 (2004) 1206.Search in Google Scholar

[36] R.Segura, G.Cárdenas: J. Cryst. Growth310 (2008) 495.Search in Google Scholar

[37] S.Fullam, D.Cottell, H.Rensmo, D.Fitzmaurice: Adv. Mater.12 (2000) 1430.Search in Google Scholar

Received: 2011-2-4
Accepted: 2011-11-23
Published Online: 2013-06-11
Published in Print: 2012-07-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Diffusivities and atomic mobilities in Cu-rich fcc Al–Cu–Mn alloys
  5. Phase transformations in non-isothermally annealed as-cast and cold-rolled AlMnScZr alloys
  6. High-temperature deformation behavior and thermal properties of an Ni30Co17Fe53 alloy
  7. Microstructural and mechanical properties of dual-phase steels welded using GMAW with solid and flux-cored welding wires
  8. Microstructure – wear performance relationship of hypoeutectic 15% Cr-2% Mo white iron
  9. The enhancement of wear properties of squeeze-cast A356 composites reinforced with B4C particulates
  10. Phase diagram of the Al–Dy–Zr ternary system at 773 K
  11. Calorimetric investigations of liquid gold–antimony–tin alloys
  12. Combustion synthesis and characterization of bulk nanostructured Ni50Al17Fe33 alloy
  13. Effect of sand blasting on structural, thermal, and mechanical properties of Zr58.3Cu18.8Al14.6Ni8.3 bulk metallic glass
  14. Studies of dynamic mass transfer at the slag–metal interface – Interfacial velocity measurements
  15. Structural and optical investigation of gadolinia-doped ceria powders prepared by polymer complex solution method
  16. Adsorption of bovine serum albumin onto titanium dioxide nanotube arrays
  17. CNT-based displacement sensor
  18. Non-covalent assembly of hybrid nanostructures of gold and palladium nanoparticles with carbon nanotubes
  19. Effect of solid content on performance of conductive silver paste for crystalline silicon solar cells
  20. Effect of inhomogeneous size and shape of graphite particles on the in-plane electrical conductivity of PP/G/CB composites
  21. The durability of fired brick incorporating textile factory waste ash and basaltic pumice
  22. DGM News
  23. DGM News
Downloaded on 21.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110693/html
Scroll to top button