Home Technology Physical and mechanical behavior of high strength self-compacting concrete containing ZrO2 nanoparticles
Article
Licensed
Unlicensed Requires Authentication

Physical and mechanical behavior of high strength self-compacting concrete containing ZrO2 nanoparticles

  • Ali Nazari and Shadi Riahi
Published/Copyright: June 11, 2013

Abstract

In the present study, the compressive strength, thermal properties and microstructure of self compacting concrete with different amounts of ZrO2 nanoparticles have been investigated. ZrO2 nanoparticles with an average particle size of 15 nm were added to self compacting concrete and various properties of the specimens were measured. The results indicate that ZrO2 nanoparticles are able to improve the compressive strength of self compacting concrete and reverse the negative effects of superplasticizer on compressive strength of the specimens. ZrO2 nanoparticles as a partial replacement of cement up to 4 wt.% could accelerate C–S–H gel formation as a result of the increased crystalline Ca(OH)2 amount at the early ages of hydration. Increasing ZrO2 nanoparticle content to more than 4 wt.% causes reduced compressive strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results: all also indicate that ZrO2 nanoparticles up to 4 wt.% could improve the mechanical and physical properties of the specimens. Finally, ZrO2 nanoparticles improved the pore structure of concrete and caused shifting the pore distribution to harmless and low-harm ones.


* Correspondence address, Ali Nazari, Assistant professor Department of Technical and Engineering Sciences Islamic Azad University, Saveh Branch, Saveh, Iran Tel.: +98 255 224 1511, Fax: +98 255 224 1501 E-mail:

References

[1] G.Köning, K.Holsechemacher, F.Dehn, D.Weisse, in: K. Ozawa, M. Ouchi (Ed.) Proceedings of the 2nd international RILEM symposium on self-compacting concrete, Published by COMS Engineering Corporation, Tokyo (2001) 507.Search in Google Scholar

[2] B.Hauke, in: K. Ozawa, M. Ouchi (Ed.) Proceedings of the 2nd International RILEM symposium on self-compacting concrete, Published by COMS Engineering Corporation, Tokyo (2001) 633.Search in Google Scholar

[3] C.Fava, L.Bergol, G.Fornasier, F.Giangrasso, C.Rocco, in: O. Wallevik, I. Nielsson (Ed.), Proceedings of the 3rd International RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L., Reykjavik (2003) 628.Search in Google Scholar

[4] A.Daoud, M.Lorrain, C.Laborderie, in: O. Wallevik, I. Nielsson (Ed.), Proceedings of the 3rd International RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L., Reykjavik (2003) 692.Search in Google Scholar

[5] V.B.Bosiljkov: Cem. Con. Res.33 (33) (2003) 1279.10.1016/S0008-8846(03)00013-9Search in Google Scholar

[6] O.Makishima, H.Tanaka, Y.Itoh, K.Komada, F.Satoh, in: K. Ozawa, M. Ouchi (Ed.), Proceedings of the 2nd International RILEM symposium on self-compacting concrete, Published by COMS Engineering Corporation, Tokyo (2001) 475.Search in Google Scholar

[7] Y.Klug, K.Holschemacher, in: O. Wallevik, I. Nielsson (Ed.), Proceedings of the 3rd International RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L., Reykjavik (2003) 596.Search in Google Scholar

[8] D.Chopin, O.Francy, S.Lebourgeois, P.Rougeau, in: O. Wallevik, I. Nielsson (Ed.), Proceedings of the 3rd International RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L., Reykjavik (2003) 672.Search in Google Scholar

[9] B.FelekoÐluS.Türkel, B.Baradan: Build. Env.42 (2007) 1795.Search in Google Scholar

[10] N.Su, K.Hsu, H.Chai: Cem. Con. Res.31 (2001) 1799.Search in Google Scholar

[11] J.Bjornstrom, A.Martinelli, A.Matic, L.Borjesson, I.Panas: Chem. Phys. Lett.392 (2004) 242.Search in Google Scholar

[12] T.Ji: Cem. Con. Res.35 (35) (2005) 1943.10.1016/j.cemconres.2005.07.004Search in Google Scholar

[13] B.-W.Jo, C.-H.Kim, G.-H.Tae, J.-B.Park: Const. Build. Mater.21 (2007) 1351.Search in Google Scholar

[14] H.Li, H.Xiao, J.Ou: Cem. Con. Res.34 (2004) 435.Search in Google Scholar

[15] H.Li, M.Zhang, J.Ou: Wear260 (2006) 1262.Search in Google Scholar

[16] Y.Qing, Z.Zenan, K.Deyu, C.Rongshen: Const. Build. Mater.21 (2007) 539.Search in Google Scholar

[17] K.L.Lin, W.C.Chang, D.F.Lin, H.L.Luo, M.C.Tsai: J. Environ. Manage.88 (2008) 708.Search in Google Scholar

[18] D.F.Lin, K.L.Lin, W.C.Chang, H.L.Luo, M.Q.Cai: Waste Manage.28 (2008) 1081.Search in Google Scholar

[19] K.Sobolev, I.Flores, L.M.Torres-Martinez, P.L.Valdez, E.Zarazua, E.L.Cuellar, in: Z. Bittnar, P.J.M. Bartos, J. Nemecek, V. Smilauer, J. Zeman (Ed.), Nanotechnology in construction: proceedings of the NICOM3 (3rd International symposium on nanotechnology in construction), Prague, Czech Republic (2009) 139.10.1007/978-3-642-00980-8_18Search in Google Scholar

[20] Y.Qing, Z.Zenan, S.Li, C.Rongshen: J. Wuhan. Univ. Technol. Mater. Sci. Ed.21 (2008) 153.Search in Google Scholar

[21] I.Campillo, A.Guerrero, J.S.Dolado, A.Porro, J.A.Ibáñez, S.Goñi: Mater. Lett.61 (2007) 1889.Search in Google Scholar

[22] Z.Li, H.Wang, S.He, Y.Lu, M.Wang: Mater. Lett.60 (2006) 356.Search in Google Scholar

[23] W.T.Kuo, K.L.Lin, W.C.Chang, H.L.Luo: J. Indian Eng. Chem.12 (2000) 702.Search in Google Scholar

[24] L.M.Flores-Velez, O.Dominguez: J. Mater. Sci.37 (2002) 983.Search in Google Scholar

[25] A.Nazari, Sh.Riahi, S.Riahi, S.F.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 94.Search in Google Scholar

[26] A.Nazari, Sh.Riahi, S.Riahi, S.F.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 90.Search in Google Scholar

[27] A.Nazari, Sh.Riahi, S.Riahi, S.F.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 98.Search in Google Scholar

[28] A.Nazari, Sh.Riahi, S.Riahi, S.F.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 86.Search in Google Scholar

[29] A.Nazari, Sh.Riahi, S.Riahi, S.F.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 102.Search in Google Scholar

[30] A.Nazari, Sh.Riahi, S.Riahi, S.F.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 43.Search in Google Scholar

[31] A.Nazari, Sh.Riahi, S.Riahi, S.F.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 29.Search in Google Scholar

[32] A.Nazari, Sh.Riahi, S.Riahi, S.F.Shamekhi, A.Khademno: J. Am. Sci.6 (2010) 6.Search in Google Scholar

[33] ASTM C150, Standard Specification for Portland Cement, annual book of ASTM standards, ASTM, Philadelphia, PA; 2001.Search in Google Scholar

[34] V.Zivica: Const. Build. Mater.23 (2009) 2846.Search in Google Scholar

[35] ASTM C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM, Philadelphia, PA; 2001.Search in Google Scholar

[36] A.B.Abell, K.L.Willis, D.A.Lange: J. Colloid Interface Sci.211 (1999) 39.Search in Google Scholar

[37] K.Tanaka, K.Kurumisawa: Cem. Con. Res.32 (2002) 1435.Search in Google Scholar

[38] J.Roncero, R.Gettu: Cemento Hormigón832 (2002) 12.Search in Google Scholar

[39] G.Hans-Ërik, P.Pentti, in: Å. Skarendahl, Ö. Petersson (Ed.), Proceedings of the 1st International RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L., Stockholm (1999) 211.Search in Google Scholar

[40] H.W.Song, K.J.Byun, S.H.Kim, D.H.Choi, in: K. Ozawa, M. Ouchi (Ed.), Proceedings of the 2nd International RILEM symposium on self-compacting concrete, Published by COMS Engineering Corporation, Tokyo (2001) 413.Search in Google Scholar

[41] T.A.Hammer, K.Johansen, Ø.Bjøntegaard, in: K. Ozawa, Ouchi (Ed.), Proceedings of the 2nd International RILEM symposium on self-compacting concrete, Published by COMS Engineering Corporation, Tokyo (2001) 423.Search in Google Scholar

[42] P.Turcry, A.Loukili, in: O. Wallevik, I. Nielsson (Ed.), Proceedings of the 3rd International RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L., Reykjavik (2003) 576.Search in Google Scholar

[43] G.Heirman, L.Vandewalle, in: O. Wallevik, I. Nielsson (Ed.), Proceedings of the 3rd International RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L., Reykjavik (2003) 606.Search in Google Scholar

[44] G.Ye, X.Xiu, G.De Schutter, A.M.Poppe, L.Taerwe: Cem. Con. Compos.29 (2007) 94.Search in Google Scholar

[45] F.Puertas, M.M.Alonso, T.Vázquez: Mater. de Construcción.55 (2005) 61.Search in Google Scholar

[46] F.Puertas, H.Santos, M.Palacios, S.Martínez-Ramírez: Adv. Cem. Res.17 (2005) 77.Search in Google Scholar

[47] F.Puertas, T.Vázquez: Mater. de Construcción.51 (2001) 53.Search in Google Scholar

[48] M.-H.Zhang, H.Li: Construct. Build. Mat.25 (2011) 608.Search in Google Scholar

[49] J.Jawed, J.Skalny, J.F.Young, in: P.Barnes (Ed.), Applied Science Publishers, Essex (1983) 284.Search in Google Scholar

[50] M.Y.A.Mollah, W.J.Adams, R.Schennach, D.L.Cocke: Adv. Cem. Res.12 (2000) 153.Search in Google Scholar

[51] K.Yamada, S.Hanehara: Proceedings of the XI International Conference on the Chemistry of Cement, Durban, Vol. 2 (2003) 538.Search in Google Scholar

[52] K.Yamada, S.Hanehara: Con. Sci. Eng.3 (2001) 135.Search in Google Scholar

[53] H.Uchikawa, D.Sawaki, S.Hanehara: Cem. Con. Res.25 (1995) 353.Search in Google Scholar

[54] J.Roncero, R.Gettu, M.A.Martin: Proceedings of the V Symposium of Asociacion Nacional de Fabricantes de Hormigon y Mortero, 2001.Search in Google Scholar

[55] C.Jolicoeur, M.A.Simard: Cem. Con. Compos.28 (1998) 87.Search in Google Scholar

[56] C.Legrand, E.Wirquin: Mater. Struct.27 (1994) 106.Search in Google Scholar

[57] H.Li, M.Zhang, J.Ou: Int. J. Fatigue.29 (2007) 1292.Search in Google Scholar

[58] Q.Ye: New build. Mater.1 (2001) 4.Search in Google Scholar

[59] S.Grzeszczyk, G.Lipowski: Cem. Con. Res.27 (1997) 907.Search in Google Scholar

[60] E.Fernandez, F.J.Gil, M.P.Ginebra, F.C.M.Driessens, J.A.Planell, S.M.Best: J. Mater. Sci. Mater. Med.10 (1999) 223.Search in Google Scholar

[61] F.Massazza: Cemento84 (1984) 359.Search in Google Scholar

[62] National Material Advisory Board. 1987. Concrete durability: A multi-billion dollar opportunity. NMAB-437. Washington: National Academy Press.Search in Google Scholar

[63] D.A.Porter, K.E.Easteriing: Phase Transformation in Metals and Alloys, 2nd ed.Chapman Hall, London (1992).10.1007/978-1-4899-3051-4Search in Google Scholar

[64] I.Müller: A History of Thermodynamics – the Doctrine of Energy and Entropy, Springer (2007).Search in Google Scholar

[65] Y.H.Lin, Y.Y.Tyan, T.P.Chang, C.Y.Chang: Cem. Con. Res.34 (2004) 1373.Search in Google Scholar

[66] P.Lu, J.F.Young: Material Research Society Symposium Proceedings (1992) 245.Search in Google Scholar

[67] R.Baierlein: Thermal Physics. Cambridge University Press (2003).Search in Google Scholar

[68] H.Reiss: Methods of Thermodynamics. Dover Publications (1965).Search in Google Scholar

Received: 2010-7-16
Accepted: 2011-3-2
Published Online: 2013-06-11
Published in Print: 2011-05-01

© 2011, Carl Hanser Verlag, München

Articles in the same Issue

  1. Original Contributions
  2. Alloying effect on microstructure and mechanical properties of thermomechanically processed Ni3(Si,Ti) alloys
  3. Contents
  4. Contents
  5. Original Contributions
  6. Neuro-finite element application in material characterization using small punch test
  7. Multi-phase biocomposite material in-situ fabricated by using hydroxyapatite and amorphous nanosilica
  8. Particularities of the formations of bainite and martensite/austenite phase in low carbon low alloy steels during continuous cooling
  9. Texture analysis of polymer modified bitumen images
  10. Influence of nitridation time on microstructure, morphology and optical properties of GaN nanowires by nitridizing Ga2O3/Cr thin films
  11. Deformation behaviour of freestanding single-crystalline Ni3Al-based nanoparticles
  12. Precipitation strengthening in high manganese austenitic TWIP steels
  13. Effects of pre-deformation and subsequent low-temperature annealing on transformation, mechanical properties and shape memory behavior of a Ti-rich TiNi alloy
  14. Enhancement in optical transmission of ZnO: Al film by c-orientation arrayed growth
  15. Physical and mechanical behavior of high strength self-compacting concrete containing ZrO2 nanoparticles
  16. Experimental and numerical studies of metallic powders subjected to cold isostatic pressing
  17. Consumption of Cu pad during multiple reflows of Ni-doped SnAgCu solder
  18. Nanocrystalline CdS thin films prepared by sol-gel spin coating
  19. An energy absorption system based on carbon nanotubes and non-aqueous liquid
  20. People
  21. Professor Dr.-Ing. Jürgen Haußelt zum 65. Geburtstag
  22. DGM News
  23. DGM News
Downloaded on 22.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110509/html
Scroll to top button