Home Technology Precipitation strengthening in high manganese austenitic TWIP steels
Article
Licensed
Unlicensed Requires Authentication

Precipitation strengthening in high manganese austenitic TWIP steels

  • Colin Scott , Blandine Remy , Jean-Louis Collet , Aurelie Cael , Cuimin Bao , Frederic Danoix , Benoît Malard and Caroline Curfs
Published/Copyright: June 11, 2013

Abstract

At low strains (∊ < 0.25), the precipitation of Ti, Nb, V carbides in austenitic Fe–Mn–C steels which exhibit twinning induced plasticity has no significant effect on work hardening. Strengthening follows the Orowan mechanism and can be described by a simple yield stress offset. However, at higher strains (∊ > 0.3) the work hardening rate decreased slightly. Synchrotron X-ray diffraction analysis suggested that this was due to a reduction in the kinetics of twin formation. The highest strengthening coefficient in cold strips was obtained with Ti additions ≤0.1 wt.% (+1 380 MPa/wt.% Ti) but the effect quickly saturated after an increase of ∼+150 MPa. With Nb additions only modest hardening (+187 MPa/wt.%) could be achieved. The strengthening due to V was >530 MPa/wt.% for V additions ≤ 0.4 wt.% Saturation effects are less critical with V additions and yield stress increases of +375 MPa were demonstrated.


* Correspondence address, Dr. Colin Scott Areva NP 10 rue Juliette Récamier, 69006 Lyon, France Tel.: +33 4 72 74 75 52, Fax: +33 4 72 74 81 45 E-mail:

References

[1] G.Frommeyer, E.J.Drewes, B.Engl: La Revue de Metallurgie-CIT10 (2000) 1245.Search in Google Scholar

[2] C.Scott, S.Allain, M.Faral, N.Guelton: La Revue de Metallurgie-CIT103 (2006) 293.10.1051/metal:2006142Search in Google Scholar

[3] L.Chen: ISIJ International47 (2009) 1804.Search in Google Scholar

[4] M.C.Chaturvedi, R.W.K.Honeycombe, D.H.Warrington: J. Iron and Steel Inst. Dec. (1968) 1236.Search in Google Scholar

[5] Y.G.Matveev, V.S.Bukhtin, D.I.Tarasko: Metallovedenie I Termicheskaya Obrabotka Metallov3 (1975) 51.Search in Google Scholar

[6] S.J.Harris, N.R.Nag: J. Mat. Sci.11 (1976) 1320.10.1007/BF00545153Search in Google Scholar

[7] K.H.Miska: Mat. Eng.8–77 (1977) 42.10.3406/polit.1977.1695Search in Google Scholar

[8] H.Masumoto, H.Yoshimura, T.Akasawa, S.Ohba, T.Harada, K.Suemune, T.Inoue, T.Ogawa, Y.Hida: Nippon Steel Technical Report22 (1983) 47.Search in Google Scholar

[9] O.A.Atasoy: Z. Metallkd.75 (1984) 463.10.1515/ijmr-1984-750612Search in Google Scholar

[10] Y.G.Kim, Y.S.Park, J.K.Han: Met. Trans. A16 (1985) 1689.Search in Google Scholar

[11] O.A.Atasoy, K.Ozbaysal, O.T.Inal: J. Mat. Sci.24 (1989) 1393.10.1007/BF02397078Search in Google Scholar

[12] K.Hee Han: Mat. Sci. Eng. A279 (2000) 1.10.1016/S0921-5093(99)00690-5Search in Google Scholar

[13] Z.Guo, T.Furuhara, T.Maki: Scripta Mat.45 (2001) 525.10.1016/S1359-6462(01)01053-3Search in Google Scholar

[14] S.Kajiwara, D.Liu, T.Kikuchi, N.Shinya: Scripta Mater.44 (2001) 2809.10.1016/S1359-6462(01)00978-2Search in Google Scholar

[15] Z.Guo, N.Kimura, S.Tagashira, T.Furuhara, T.Maki: ISIJ Int.42 (2002) 1033.Search in Google Scholar

[16] T.Furuhara, T.Shinyoshi, G.Miyamoto, J.Yamaguchi, N.Sugita, N.Kimura, N.Takemura, T.Maki: ISIJ43 (2003) 2028.Search in Google Scholar

[17] H.Kubo, K.Nakamura, S.Farjami, T.Maruyama: Mat. Sci. Eng.378 (2004) 343.Search in Google Scholar

[18] Y.Yazawa, T.Furuhara, T.Maki: Acta Mater.52 (2004) 3727.10.1016/j.actamat.2004.04.027Search in Google Scholar

[19] H.El-Faramawy: Steel Grips3 (2005) 360.Search in Google Scholar

[20] V.V.Sagaradze, I.I.Kositsyna, M.L.Mukhin, Y.V.Belozerov, Y.R.Zaynutdinov: Mat. Sci. Eng. A481 (2008) 747.10.1016/j.msea.2007.02.158Search in Google Scholar

[21] A.K.Srivastava, K.Das: Mat. Sci. Eng. A516 (2009) 1.10.1016/j.msea.2009.04.041Search in Google Scholar

[22] T.Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London (1997).Search in Google Scholar

[23] W.Huang: Met. Trans. A22 (1991) 1911.Search in Google Scholar

[24] K.Han: Scripta Mater.28 (1992) 699.10.1016/0956-716X(93)90037-SSearch in Google Scholar

[25] S.Koyama, T.Ishii, K.Narita: Nippon Kink. Gakk35 (1971) 1089.Search in Google Scholar

[26] M.G.Abken, I.Weiss, J.J.Jonas: Acta. Mater.29 (1981) 111.10.1016/0001-6160(81)90092-4Search in Google Scholar

[27] G.DaCosta, F.Vurpillot, A.Bostel, M.Bouet, B.Deconihout: Review of Scientific Instruments76 (2005) 013304.101334.8.Search in Google Scholar

[28] P.Cugy, N.Guelton, C.Scott, F.Stouvenot, M.-C.Theyssier: Patent WO 2006/056670.Search in Google Scholar

[29] O.Bouaziz, H.Zurob, B.Chebab, J.D.Embury, S.Allain, M.Huang: Mat. Sci. Tech. (2010) article in press. 10.1179/026708309X12535382371852Search in Google Scholar

[30] K.J.Irvine, T.Gladman, F.B.Pickering: J. Iron and Steel Inst., July (1969) 379.Search in Google Scholar

[31] T.Gladman: Mat. Sci. Tech.15 (1999) 30.10.1179/026708399773002782Search in Google Scholar

[32] S.Allain: Ph.D. Thesis, Institut National Polytechnique de Lorraine (2002).Search in Google Scholar

[33] F.Perrard, C.Scott: ISIJ Int.47 (2007) 1168.Search in Google Scholar

[34] B.Malard: in preparation.Search in Google Scholar

[35] O.Bouaziz, S.Allain, C.Scott: Scripta Mater.58 (2008) 484.10.1016/j.scriptamat.2007.10.050Search in Google Scholar

[36] S.Allain, P.Cugy, C.Scott, J.-P.Chacirc;teau, A.Rusinek, A.Deschamps: Int. J. Mat. Res.99 (2008) 734.Search in Google Scholar

[37] A.Dumay: Ph.D. Thesis, Institut National Polytechnique de Lorraine (2008).Search in Google Scholar

[38] J.-L.Collet: Ph.D. Thesis, Institut Polytechnique de Grenoble (2009).Search in Google Scholar

[39] M.Wilkens: Phys. Stat. Sol. B171 (1970).Search in Google Scholar

Received: 2010-7-2
Accepted: 2011-3-2
Published Online: 2013-06-11
Published in Print: 2011-05-01

© 2011, Carl Hanser Verlag, München

Articles in the same Issue

  1. Original Contributions
  2. Alloying effect on microstructure and mechanical properties of thermomechanically processed Ni3(Si,Ti) alloys
  3. Contents
  4. Contents
  5. Original Contributions
  6. Neuro-finite element application in material characterization using small punch test
  7. Multi-phase biocomposite material in-situ fabricated by using hydroxyapatite and amorphous nanosilica
  8. Particularities of the formations of bainite and martensite/austenite phase in low carbon low alloy steels during continuous cooling
  9. Texture analysis of polymer modified bitumen images
  10. Influence of nitridation time on microstructure, morphology and optical properties of GaN nanowires by nitridizing Ga2O3/Cr thin films
  11. Deformation behaviour of freestanding single-crystalline Ni3Al-based nanoparticles
  12. Precipitation strengthening in high manganese austenitic TWIP steels
  13. Effects of pre-deformation and subsequent low-temperature annealing on transformation, mechanical properties and shape memory behavior of a Ti-rich TiNi alloy
  14. Enhancement in optical transmission of ZnO: Al film by c-orientation arrayed growth
  15. Physical and mechanical behavior of high strength self-compacting concrete containing ZrO2 nanoparticles
  16. Experimental and numerical studies of metallic powders subjected to cold isostatic pressing
  17. Consumption of Cu pad during multiple reflows of Ni-doped SnAgCu solder
  18. Nanocrystalline CdS thin films prepared by sol-gel spin coating
  19. An energy absorption system based on carbon nanotubes and non-aqueous liquid
  20. People
  21. Professor Dr.-Ing. Jürgen Haußelt zum 65. Geburtstag
  22. DGM News
  23. DGM News
Downloaded on 22.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110508/html
Scroll to top button