Home Stress-corrosion cracking susceptibility of AZ31 alloy after varied heat-treatment in 3.5 wt.% NaCl solution
Article
Licensed
Unlicensed Requires Authentication

Stress-corrosion cracking susceptibility of AZ31 alloy after varied heat-treatment in 3.5 wt.% NaCl solution

  • L. C. Tsao
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

The stress corrosion cracking behavior of a commercial AZ31 magnesium alloy after T5 and T6 heat treatments under a vacuum of 10−3 torr has been evaluated via slow strain rate tensile tests in an aqueous 3.5 wt.% NaCl solution. The experimental results show that this material displays a high sensitivity to stress corrosion cracking. The fractured surface was consistent with a significant transgranular component. Double-line cracking that resulted from twinning could be readily spotted on the cleavage plane. The presence of such deformation twins accompanied by the formation of voids is the main reason for the stress corrosion cracking susceptibility of this alloy. The disappearance of twins after artificial aging at 260 °C for 4 h significantly improves the corrosion resistance, increases the breakdown potential difference ΔΦ (thus lowering the pitting tendency), and decreases the corrosion current density in a 3.5 wt.% NaCl solution.


Correspondence address, L. C. Tsao Department of Materials Engineering National Pingtung University of Science & Technology 1, Hseuhfu road, Neipu, Pingtung 91201, Taiwan Tel.: +886 8 7703 202 7560 Fax: +886 8 7740 552 E-mail address:

References

[1] M.M.Avedesian: Magnesium and magnesium alloys, ASM Specialty Handbook (1999) 3.Search in Google Scholar

[2] R.L.Edgar: Magnesium Alloys and their Application, K.U. Kainer Pub., France (2000) 3.Search in Google Scholar

[3] M.R.Barnett: Mater. Sci. Eng. A464 (2007) 1. 10.1016/j.msea.2006.12.037Search in Google Scholar

[4] M.R.Barnett: Mater. Sci. Eng. A464 (2007) 8. 10.1016/j.msea.2007.02.109Search in Google Scholar

[5] S.M.Yin, F.Yang, X.M.Yang, S.D.Wu, S.X.Li, G.Y.Li: Mater. Sci. Eng. A494 (2008) 397. 10.1016/j.msea.2008.04.056Search in Google Scholar

[6] J.Koike: Mater. Sci. Forum.4192 (2003) 189. 10.4028/www.scientific.net/MSF.419-422.189Search in Google Scholar

[7] J.Koike, T.Kobayashi, T.Mukai, H.Watanabe, M.Suzuki, K.Maruyama, K.Higashi: Acta Mater.51 (2003) 2055. 10.1016/S1359-6454(03)00005-3Search in Google Scholar

[8] M.Barnett, S.Jacob, B.Gerard, J.Mullins: Scripta Mater.59 (2008) 1035. 10.1016/j.scriptamat.2008.06.061Search in Google Scholar

[9] Z.Yang, J.P.Li, J.X.Zhang, G.W.Lorimer, J.Robson: Acta Metall. Sin.21 (2008) 313. 10.1016/S1006-7191(08)60054-XSearch in Google Scholar

[10] C.H.CáceresC.J.Davidson, J.R.Griffiths, C.L.Newton: Mater. Sci. Eng. A325 (2002) 344. 10.1016/S0921-5093(01)01467-8Search in Google Scholar

[11] I.A.Yakubtsov, B.J.Diak, C.A.Sager, B.Bhattacharya, W.D.MacDonald, M.Niewczas: Mater. Sci. Eng. A496 (2008) 247.Search in Google Scholar

[12] L.C.Tsao, C.F.Wu, T.H.Chuang: Z. Metallkd.92 (2001) 572.Search in Google Scholar

[13] G.Song, A.Atrens: Adv. Eng. Mater.1 (1999) 11. 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-NSearch in Google Scholar

[14] G.L.Song, A.Atrens: Adv. Eng. Mater.5 (2003) 837. 10.1002/adem.200310405Search in Google Scholar

[15] A.Atrens, W.Dietzel: Adv. Eng. Mater.9 (2007) 292. 10.1002/adem.200600275Search in Google Scholar

[16] G.Song, A.Atrens: Adv. Eng. Mater.9 (2007) 177. 10.1002/adem.200600221Search in Google Scholar

[17] E.Ghali, W.Dietzel, K.U.Kainer: J. Mater. Eng. Perf.13 (2004) 7. 10.1361/10599490417533Search in Google Scholar

[18] N.Winzer, A.Atrens, G.Song, E.Ghali, W.Dietzel, K.U.Kainer, N.Hort, C.Blawert: Adv. Eng. Mater.7 (2005) 659. 10.1002/adem.200500071Search in Google Scholar

[19] L.C.Tsao, T.H.Chuang: J. Chinese Corr. Eng.17 (2003) 391.Search in Google Scholar

[20] Metals Handbook, 9th ed.ASM International, Materials Park, Ohio, (1995) 4.Search in Google Scholar

[21] ASM Handbook committee, Alloy Phase Diagrams, ASM International, 1992.Search in Google Scholar

[22] A.JägerP.Lukác, V.Gärtnerová, J.Haloda, M.Dopita: Mater. Sci. Eng. A432 (2006) 20. 10.1016/j.msea.2006.06.070Search in Google Scholar

[23] O.Lunder, J.E.Lein, T.K.Aune, K.Nisancioglu: Corr.45 (1989) 741.Search in Google Scholar

[24] A.Pardo, M.C.Merino, A.E.Coy, R.Arrabal, F.Viejo, E.Matykina: Corr. Sci.50 (2008) 823. 10.1016/j.corsci.2007.11.005Search in Google Scholar

[25] G.Ben-Hamu, A.Eliezer, E. M.Gutman: Electrochim. Acta52 (2006) 304. 10.1016/j.electacta.2006.05.009Search in Google Scholar

[26] M.Andrei, A.Eliezer, P.L.Bonora, E.M.Gutman: Mater. Corros.53 (2002) 455. 10.1002/1521-4176(200207)53:7<455::AID-MACO455>3.0.CO;2-4Search in Google Scholar

[27] G.Ben-Hamu, D.Eliezer, L.Wagner: J. Alloys Comp.468 (2009) 222. 10.1016/j.jallcom.2008.01.084Search in Google Scholar

[28] D.Nguyen, A.W.Thomposn, I.M.Bernstein: Acta Metall.35 (1987) 2417. 10.1016/0001-6160(87)90139-8Search in Google Scholar

[29] Y.Q.Cheng, Z.H.Chen, W.J.Xia: J. Mater. Sci.42 (2007) 3552. 10.1007/s10853-007-1559-0Search in Google Scholar

[30] M.Barnett, S.Jacob, B.Gerard, J.Mullins: Scripta Mater.59 (2008) 1035. 10.1016/j.scriptamat.2008.06.061Search in Google Scholar

[31] D.G.Chakrapani, E.N.Pugh: Metal. Trans. A6 (1975) 1155.Search in Google Scholar

[32] E.I.Meletis, R.F.Hochan: Corr. Sci.40 (1984) 39.Search in Google Scholar

[33] W.R.Wearmouth, G.P.Dean, R.N.Parkins: Corrosion29 (1979) 251.Search in Google Scholar

[34] D.G.Chakrapani, E.N.Pugh: Corrosion-Nace31 (1975) 247.Search in Google Scholar

[35] G.Oryall, D.Tromans: Corrosion-Nace27 (1971) 334.Search in Google Scholar

[36] G.L.Makar, J.Kruger, K.Sieradzki: Corr. Sci.34 (1993) 1311. 10.1016/0010-938X(93)90090-4Search in Google Scholar

[37] N.Winzer, A.Atrens, W.Dietzel, G.Song, K.U.Kainer: Mater. Sci. Eng. A466 (2007) 1831. 10.1016/j.msea.2007.03.020Search in Google Scholar

Received: 2009-4-11
Accepted: 2010-6-29
Published Online: 2013-05-18
Published in Print: 2010-09-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Hans-Peter Degischer – 65th birthday
  5. Basic
  6. X-ray and neutron imaging – Complementary techniques for materials science and engineering
  7. Fast in-situ X-ray micro tomography characterisation of microstructural evolution and strain-induced damage in alloys at various temperatures
  8. Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys
  9. Influence of stacking fault energy and alloying on stage V hardening of HPT-deformed materials
  10. Thermo-physical properties of silver/carbon fibre composites
  11. Influence of reinforcement contiguity on the thermal expansion of alumina particle reinforced aluminium composites
  12. A continuum based microstructure model of inhomogeneous hardening and recovery as a pre-stage of recrystallization nucleation
  13. Applied
  14. Metal foams – towards microcellular materials
  15. Gigacycle fatigue response of tool steels produced by powder metallurgy compared to ingot metallurgy tool steels
  16. Characterization of the microstructure and damage mechanisms in a Ti6Al4V alloy modified with 1 wt.% B
  17. Structural and age hardening characteristics of near eutectic Al–Si alloys
  18. Stress-corrosion cracking susceptibility of AZ31 alloy after varied heat-treatment in 3.5 wt.% NaCl solution
  19. Tensile deformation behavior of AA5083-H111 at cold and warm temperatures
  20. Experimental investigation of thermal fatigue behaviour of header tube to stub welded joint in power plants
  21. Synthesis and characterization of nanostructured Cu/ZnO/Al2O3 from lyotropic liquid crystalline templates
  22. DGM News
  23. Personal
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110394/html
Scroll to top button