Home Influence of reinforcement contiguity on the thermal expansion of alumina particle reinforced aluminium composites
Article
Licensed
Unlicensed Requires Authentication

Influence of reinforcement contiguity on the thermal expansion of alumina particle reinforced aluminium composites

Dedicated to Professor Dr. H.-P. Degischer on the occasion of his 65th birthday
  • Ghodratollah Roudini , Reza Tavangar , Ludger Weber and Andreas Mortensen
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

Pore-free composites combining alumina particles within a matrix of pure aluminium are produced by pressure infiltration, varying systematically the degree of the contiguity, β, of the ceramic phase by sintering prior to infiltration. The thermal expansion of these composites is characterized using repeated cycling in a dilatometer from 303 to 543 K. The initial composite thermal expansion measured immediately after changing the sign of the temperature–time function conforms with predictions from thermoelasticity. Upon further temperature excursion, upward deviations from thermoelastic predictions are found; these are attributed to the influence of matrix plasticity, the influence of which decreases as β increases. The composite thermal expansion travels across 80 % of the theoretical range of initial thermoelastic values as β increases from 0 to 0.123, leading to the conclusion that even a small level of connectivity of the ceramic phase causes significant changes in the thermal expansion of isotropic metal/ceramic composites.


Correspondence address, Dr. Ludger Weber Laboratory for Mechanical Metallurgy, Ecole Polytechnique Fédérale de Lausanne, LMM-IMX-STI, MX-D120, Station 12CH-1015 Lausanne, Switzerland Tel.: +41 21 693 29 34 Fax: +41 21 693 46 64 E-mail:

References

[1] S.Torquato: Appl. Mech. Rev.44 (1991) 37.10.1115/1.3119494Search in Google Scholar

[2] L.Weber, C.Fischer, A.Mortensen: Acta Mater.51 (2003) 495.Search in Google Scholar

[3] L.Weber, J.Dorn, A.Mortensen: Acta Mater.51 (2003) 3199.Search in Google Scholar

[4] A.Evans, C.SanMarchi, A.Mortensen: Metal Matrix Composites in Industry – An Introduction and a Survey, Kluwer Academic Publishers, Dordrecht NL (2003).Search in Google Scholar

[5] N.Chawla, K.K.Chawla: Metal Matrix Composites Springer, New York (2006).10.1002/9783527603978.mst0150Search in Google Scholar

[6] D.B.Miracle: Comp. Sci. Techn.65 (2005) 2526.10.1016/j.compscitech.2005.05.027Search in Google Scholar

[7] D.D.L.Chung, C.Zweben, in: A.Kelly, C.Zweben (Eds.) Comprehensive Composite Materials, Pergamon, Oxford (2000) 701.10.1016/B0-08-042993-9/00132-7Search in Google Scholar

[8] T.W.Clyne, P.J.Withers: An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge UK (1993).10.1017/CBO9780511623080Search in Google Scholar

[9] F.Delannay, in: A.Kelly, C.Zweben (Eds.) Comprehensive Composite Materials, Pergamon, Oxford (2000) 341.10.1016/B0-08-042993-9/00013-9Search in Google Scholar

[10] C.L.Hsieh, W.H.Tuan: Mat. Sci. Eng. A460–461 (2007) 453.Search in Google Scholar

[11] M.C.Gui, S.B.Kang, K.Euh: Mat. Sci. Techn.24 (2008) 1362.Search in Google Scholar

[12] T.H.Nam, G.Requena, P.Degischer: Composites, A39 (2008) 856.Search in Google Scholar

[13] Y.L.Shen, A.Needleman, S.Suresh: Met. Mater. Trans. A25 (1994) 839.Search in Google Scholar

[14] Y.L.Shen: Mat. Sci. Eng. A252 (1998) 269.Search in Google Scholar

[15] Y.L.Shen: Mat. Sci. Eng. A237 (1997) 102.10.1016/S0038-1098(96)00726-0Search in Google Scholar

[16] D.K.Balch, T.J.Fitzgerald, V.J.Michaud, A.Mortensen, Y.L.Shen, S.Suresh: Met. Mater. Trans. A27 (1996) 3700.Search in Google Scholar

[17] T.Huber, H.P.Degischer, G.Lefranc, T.Schmitt: Comp. Sci. Techn.66 (2006) 2206.Search in Google Scholar

[18] T.Huber, H.P.Degischer, T.Schmitt, G.Lefranc, in: F.K. Chang (Ed.) Proceedings of the 10th US–Japan conference on composite materials, DEStech Publication, Stanford University, (2002) 596.Search in Google Scholar

[19] C.SanMarchi, M.Kouzeli, R.Rao, J.A.Lewis, D.C.Dunand: Scripta Mater.49 (2003) 861.Search in Google Scholar

[20] M.Hoffman, S.Skirl, W.Pompe, J.Rödel: Acta Mater.47 (1999) 565.Search in Google Scholar

[21] S.Skirl, M.Hoffman, K.Bowman, S.Wiederhorn, J.Rödel: Acta Mater.46 (1998) 2493.Search in Google Scholar

[22] J.Gurland: Trans. AIME212 (1958) 452.Search in Google Scholar

[23] R.M.German: Sintering, Theory and Practice, J. Wiley&Sons, New York USA (1996).Search in Google Scholar

[24] S.J.L.Kang: Sintering – Densification, Grain Growth and Microstructure, Elsevier Butterworth-Heinemann, Oxford UK (2005).Search in Google Scholar

[25] G.Roudini: High volume fraction particulate and interpenetrating phase composites (IPC), Ph. D. Thesis no. 4008 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2007).Search in Google Scholar

[26] M.Bahraini, J.M.Molina, M.Kida, L.Weber, J.Narciso, A.Mortensen: Journal of Current Opinions in Solid State&Materials Science9 (2005) 196.Search in Google Scholar

[27] E.Arzt: Acta Met.30 (1982) 1883.10.1016/0001-6160(82)90028-1Search in Google Scholar

[28] R.A.Schapery: J. Comp. Mat.2 (1968) 380.10.1177/002199836800200308Search in Google Scholar

[29] Z.Hashin, S.Shtrikman: Journal of the Mechanics and Physics of Solids11 (1963) 127.Search in Google Scholar

[30] E.DörreH.Hübner: Alumina: processing, properties, and applicationsSpringer, Berlin (1984).10.1007/978-3-642-82304-6Search in Google Scholar

[31] Y.S.Touloukian, R.K.Kirby, R.E.Taylor, T.Y.R.Lee, in: Y.S.Touloukian (Ed.) Thermophysical properties of matter, Thermal Expansion: nonmetallic materials, Vol. 13, Plenum Press, New York (1977).Search in Google Scholar

[32] Y.S.Touloukian, R.K.Kirby, R.E.Taylor, T.Y.R.Lee, in: Y.S.Touloukian (Ed.) Thermophysical properties of matter, Thermal Expansion: Metallic elements and alloys, Vol. 12, Plenum Press, New York (1975).Search in Google Scholar

[33] S.Elomari, R.Boukhili, D.J.Lloyd: Acta Mater.44 (1996) 1873.Search in Google Scholar

[34] S.Elomari, R.Boukhili, C.SanMarchi, A.Mortensen, D.J.Lloyd: J. Mat. Sci.32 (1997) 2131.Search in Google Scholar

[35] S.Elomari, M.D.Skibo, A.Sundarrajan, H.Richards: Comp. Sci. Techn.58 (1998) 369.Search in Google Scholar

[36] D.S.Wilkinson, W.Pompe, M.Oeschner: Progress in Materials Science46 (2001) 379.Search in Google Scholar

[37] S.Torquato: Random Heterogeneous Media, Springer, New York (2002).10.1007/978-1-4757-6355-3Search in Google Scholar

[38] R.Mueller, A.Rossoll, L.Weber, M.A.M.Bourke, D.C.Dunand, A.Mortensen: Acta Mater.56 (2008) 4402.Search in Google Scholar

Received: 2010-3-6
Accepted: 2010-6-9
Published Online: 2013-05-18
Published in Print: 2010-09-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Hans-Peter Degischer – 65th birthday
  5. Basic
  6. X-ray and neutron imaging – Complementary techniques for materials science and engineering
  7. Fast in-situ X-ray micro tomography characterisation of microstructural evolution and strain-induced damage in alloys at various temperatures
  8. Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys
  9. Influence of stacking fault energy and alloying on stage V hardening of HPT-deformed materials
  10. Thermo-physical properties of silver/carbon fibre composites
  11. Influence of reinforcement contiguity on the thermal expansion of alumina particle reinforced aluminium composites
  12. A continuum based microstructure model of inhomogeneous hardening and recovery as a pre-stage of recrystallization nucleation
  13. Applied
  14. Metal foams – towards microcellular materials
  15. Gigacycle fatigue response of tool steels produced by powder metallurgy compared to ingot metallurgy tool steels
  16. Characterization of the microstructure and damage mechanisms in a Ti6Al4V alloy modified with 1 wt.% B
  17. Structural and age hardening characteristics of near eutectic Al–Si alloys
  18. Stress-corrosion cracking susceptibility of AZ31 alloy after varied heat-treatment in 3.5 wt.% NaCl solution
  19. Tensile deformation behavior of AA5083-H111 at cold and warm temperatures
  20. Experimental investigation of thermal fatigue behaviour of header tube to stub welded joint in power plants
  21. Synthesis and characterization of nanostructured Cu/ZnO/Al2O3 from lyotropic liquid crystalline templates
  22. DGM News
  23. Personal
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110388/html
Scroll to top button