Home Metal foams – towards microcellular materials
Article
Licensed
Unlicensed Requires Authentication

Metal foams – towards microcellular materials

Dedicated to Prof. Dr. H.-P. Degischer on the occasion of his 65th birthday
  • Francisco García-Moreno , Manas Mukherjee , Eusebio Solórzano and John Banhart
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

Various techniques to manufacture low-density metallic foams containing sub-millimetre or even micrometre-sized pores are discussed and first trial experiments presented. Three strategies are evaluated: use of an intrinsic blowing agent, foaming under high pressure and foam control by mechanical pressure manipulation. In all three cases, average pore diameters well below 1 mm could be achieved for some aluminium or zinc-based foams while keeping the relative density in a range between 20 % and 50 % of the full metal density.


Corresponding author, Prof. Dr. John Banhart Helmholtz-Centre Berlin for Materials and Energy – Institute of Applied Materials Hahn-Meitner-Platz 1, 14109 Berlin, Germany Tel.: +49 30 8062 42710Fax: +49 30 8062 42098 E-mail:

References

[1] L.J.Gibson, M.F.Ashby: Cellular Solids, Cambridge University Press, Cambridge (1999).Search in Google Scholar

[2] H.Bart-Smith, A.-F.Bastawros, D.R.Mumm, A.G.Evans, D.J.Sypeck, H.N.G.Wadley: Acta Mater.46 (1998) 3583. 10.1016/S1359-6454(98)00025-1Search in Google Scholar

[3] U.Ramamurty, A.Paul: Acta Mater.52 (2004) 869. 10.1016/j.actamat.2003.10.021Search in Google Scholar

[4] E.W.Andrews, G.Gioux, P.Onck, L.J.Gibson: Int. J. Mech. Sci.43 (2001) 701. 10.1016/S0020-7403(00)00043-6Search in Google Scholar

[5] H.-P.Degischer, B.Kriszt: Handbook of Cellular Metals, Wiley-VCH, Weinheim (2002). 10.1002/3527600558Search in Google Scholar

[6] B.Kriszt, B.Foroughi, K.Faure, H.-P.Degischer, in: J.Banhart, M.F.Ashby, N.A.Fleck (Eds.), Metal Foams and Porous Metal Structures, MIT-Verlag, Bremen (1999) 241.Search in Google Scholar

[7] B.Kriszt, B.Foroughi, K.Faure, H.-P.Degischer: Mater. Sci. Technol.16 (2000) 792.Search in Google Scholar

[8] R.Jancek, A.Kottar, H.-P.Degischer, in: J.Banhart, N.A.Fleck, A.Mortensen (Eds.), Cellular Metals – Manufacture, Properties, Applications, MIT-Verlag, Berlin (2003) 19.Search in Google Scholar

[9] A.Elmoutaouakkil, L.Salvo, E.Maire, G.Peix: Adv. Eng. Mater.4 (2002) 803. 10.1002/1527-2648(20021014)4:10<803::AID-ADEM803>3.0.CO;2-DSearch in Google Scholar

[10] J.Banhart, H.Stanzick, L.Helfen, T.Baumbach, K.Nijhof: Adv. Eng. Mater.3 (2001) 407. 10.1002/1527-2648(200106)3:6<407::AID-ADEM407>3.0.CO;2-YSearch in Google Scholar

[11] F.Garcí-Moreno, A.Rack, L.Helfen, T.Baumbach, S.Zabler, N.Babcsán, J.Banhart, T.Martin, C.Ponchut, M.Di Michiel: Appl. Phys. Lett.92 (2008) 134104.Search in Google Scholar

[12] A.Rack, F.Garcí-Moreno, T.Baumbach, J.Banhart: J. Synchrotron Rad.16 (2009) 432. 10.1107/S0909049509001939Search in Google Scholar

[13] D.Leitlmeier, H.-P.Degischer, H.Flankl: Adv. Eng. Mater.4 (2002) 735. 10.1002/1527-2648(20021014)4:10<735::AID-ADEM735>3.0.CO;2-YSearch in Google Scholar

[14] C.Körner, F.Berger, M.Arnold, C.Stadelmann, R.F.Singer: Mater. Sci. Technol.16 (2000) 781.Search in Google Scholar

[15] F.Simancik, N.Minarikova, S.Culak, J.Kovacik, in: J.Banhart, M.F.Ashby, N.A.Fleck (Eds.), Metal Foams and Porous Metal Structures, MIT Publishing, Bremen (1999) 105.Search in Google Scholar

[16] C.Körner: Integral Foam Molding of Light Metals, Springer, Berlin, Heidelberg (2008).Search in Google Scholar

[17] M.Mukherjee, C.Jimenez, F.Garcí-Moreno, J.Banhart: German Patent Application DE 10 2009 020 004.5, 2009.Search in Google Scholar

[18] M.Mukherjee, F.Garcí-Moreno, C.Jimenez, J.Banhart: Adv. Eng. Mater.12 (2010) 472. 10.1002/adem.201000017Search in Google Scholar

[19] J.Banhart, D.Bellmann, H.Clemens: Acta Mater.49 (2001) 3409. 10.1016/S1359-6454(01)00256-7Search in Google Scholar

[20] H.Stanzick, M.Wichmann, J.Weise, L.Helfen, T.Baumbach, J.Banhart: Adv. Eng. Mater.4 (2002) 814. 10.1002/1527-2648(20021014)4:10<814::AID-ADEM814>3.0.CO;2-5Search in Google Scholar

[21] M.Mukherjee, F.Garcí-Moreno, J.Banhart: Scripta Mater.63 (2010) 235. 10.1016/j.scriptamat.2010.03.064Search in Google Scholar

[22] B.Matijasevic, J.Banhart: Scripta Mater.54 (2006) 503. 10.1016/j.scriptamat.2005.10.045Search in Google Scholar

[23] F.von Zeppelin, M.Hirscher, H.Stanzick, J.Banhart: Comp. Sci. Technol.63 (2003) 2293. 10.1016/S0266-3538(03)00262-8Search in Google Scholar

[24] D.Lehmhus, G.Rausch: Adv. Eng. Mater.6 (2004) 313. 10.1002/adem.200300572Search in Google Scholar

[25] B.Matijasevic, J.Banhart, S.Fiechter, O.Görke, N.Wanderka: Acta Mater.54 (2006) 1887. 10.1016/j.actamat2005.12.012Search in Google Scholar

[26] F.Garcí-Moreno, J.Banhart: German Patent DE 10 2005 037 305 B4 (2005).10.1088/1126-6708/2005/10/037Search in Google Scholar

[27] F.Garcí-Moreno, J.Banhart: Coll. Surf. A309 (2007) 264. 10.1016/j.colsurfa.2007.03.017Search in Google Scholar

[28] C.Jimenez, F.Garcí-Moreno, J.Banhart, G.Zehl, in: L.P.Lefebvre, J.Banhart, D.Dunand (Eds), Porous Metals and Metallic Foams, DEStech Publications, Pennsylvania (2008) 59.Search in Google Scholar

[29] F.Garcí-Moreno, N.Babcsan, J.Banhart: Coll. Surf.A263 (2005) 290. 10.1016/j.colsurfa.2004.12.044Search in Google Scholar

[30] F.Garcí-Moreno et al.: unpublished results.Search in Google Scholar

[31] H.Stanzick, I.Duarte, J.Banhart: Materialwiss.u. Werkstofftech.31 (2000) 409. 10.1002/1521-4052(200006)31:6<09::AID-MAWE409>3.0.CO;2-OSearch in Google Scholar

Received: 2010-3-2
Accepted: 2010-6-10
Published Online: 2013-05-18
Published in Print: 2010-09-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Hans-Peter Degischer – 65th birthday
  5. Basic
  6. X-ray and neutron imaging – Complementary techniques for materials science and engineering
  7. Fast in-situ X-ray micro tomography characterisation of microstructural evolution and strain-induced damage in alloys at various temperatures
  8. Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys
  9. Influence of stacking fault energy and alloying on stage V hardening of HPT-deformed materials
  10. Thermo-physical properties of silver/carbon fibre composites
  11. Influence of reinforcement contiguity on the thermal expansion of alumina particle reinforced aluminium composites
  12. A continuum based microstructure model of inhomogeneous hardening and recovery as a pre-stage of recrystallization nucleation
  13. Applied
  14. Metal foams – towards microcellular materials
  15. Gigacycle fatigue response of tool steels produced by powder metallurgy compared to ingot metallurgy tool steels
  16. Characterization of the microstructure and damage mechanisms in a Ti6Al4V alloy modified with 1 wt.% B
  17. Structural and age hardening characteristics of near eutectic Al–Si alloys
  18. Stress-corrosion cracking susceptibility of AZ31 alloy after varied heat-treatment in 3.5 wt.% NaCl solution
  19. Tensile deformation behavior of AA5083-H111 at cold and warm temperatures
  20. Experimental investigation of thermal fatigue behaviour of header tube to stub welded joint in power plants
  21. Synthesis and characterization of nanostructured Cu/ZnO/Al2O3 from lyotropic liquid crystalline templates
  22. DGM News
  23. Personal
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110385/html
Scroll to top button