Home Characterization of the microstructure and damage mechanisms in a Ti6Al4V alloy modified with 1 wt.% B
Article
Licensed
Unlicensed Requires Authentication

Characterization of the microstructure and damage mechanisms in a Ti6Al4V alloy modified with 1 wt.% B

Dedicated to Professor Dr. H.-P. Degischer on the occasion of his 65th birthday
  • C. Poletti , G. Requena , D. Tolnai , P. Cloetens and A. Steiger-Thirsfeld
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

Powder metallurgy produced Ti-6Al-4V-1B-0.1C is a modification of the Ti-6Al-4V commercial titanium alloy. TiB whiskers precipitate in the Ti64 matrix during the solidification of the powders before consolidation. The whiskers present two size classes due to the solidification rate and satelliting effect. Scanning electron and light optical microscopy were used to characterize the morphology, distribution and damage of TiB before and after hot deformation. These results were compared with those obtained by parallel beam and magnified synchrotron holotomography, and by focused ion beam tomography. The damage produced during hot deformation was provoked by debonding and cracks at the larger TiB particles. Simulations of the compression tests using finite element analysis were carried out to identify strain and stress localizations.


Correspondence address, Dr. Cecilia PolettiInstitute of Materials Science and TechnologyVienna University of TechnologyKarlsplatz 13/E308 A-1040 Vienna, Austria Tel.: +43 1 58801 30818 Fax: +43 1 58801 30899 E-mail:

References

[1] L.Guozhen, Z.Quanpu, D.Ju: Titanium995 (1995) III, 2704.Search in Google Scholar

[2] M.Peters, C.Leyens: Titan und Titanlegierungen, Wiley VCH, Weinheim2002. 10.1002/9783527611089Search in Google Scholar

[3] D.E.Alman, J.A.Hawk: Wear629 (1999) 225.Search in Google Scholar

[4] S.Gorsse, D.B.Miracle: Acta Mater.51 (2003) 2427. 10.1016/S1359-6454(02)00510-4Search in Google Scholar

[5] S.Gorsse, Y.Le Petitcorps, S.Matar, F.Rebillat: Mater. Sci. Eng. A340 (2003) 80. 10.1016/S0921-5093(02)00188-0Search in Google Scholar

[6] H.Feng, O.Meng, Y.Zhou, D.Jia: Mater. Sci. Eng. A397 (2005) 92. 10.1016/j.msea.2005.02.003Search in Google Scholar

[7] E.Zhang, S.Zeng, B.Wang: J. Mater. Process. Technol.125–126 (2002) 103. 10.1016/S0924-0136(02)00329-1Search in Google Scholar

[8] S.Gorsse, J.P.Chaminade, Y.Le Petitcorps: Compos. Part A29 (1998) 1229. 10.1016/S1359-835X(98)00080-3Search in Google Scholar

[9] T.M.T.Godfrey, P.S.Goodwin, C.M.Ward-Close: Titanium999 (1999) 1868.Search in Google Scholar

[10] W.J.Lu, D.Zhang, X.N.Zhang, R.J.Wu, T.Sakata, H.Mori: Mater. Sci. Eng. A311 (2001) 142. 10.1016/S0921-5093(01)00910-8Search in Google Scholar

[11] S.Madtha, C.Lee, K.S.R.Chandran: J. Am. Ceram. Soc.91 (2008) 1319. 10.1111/j.1551-2916.2007.02246.xSearch in Google Scholar

[12] C.Poletti. F.Warchomicka, H.-P.Degischer: Mater. Sci. Eng. A527 (2010) 1109. 10.1016/j.msea.2009.09.041Search in Google Scholar

[13] S.C.Tjong, Z.Y.Ma: Mater. Sci. Eng. R29 (2000) 49. 10.1016/S0927-796X(00)00024-3Search in Google Scholar

[14] S.Tamirisakandala, R.B.Bhat, D.B.Miracle, S.Boddapati, R.Bordia, R.Vanover, V.K.Vasudevan: Scr. Mater.53 (2005) 217. 10.1016/j.scriptamat.2005.03.038Search in Google Scholar

[15] C.Poletti, H.-P.Degischer, S.Kremmer, W.Marketz: Mater. Sci. Eng. A486 (2008) 127. 10.1016/j.msea.2007.08.077Search in Google Scholar

[16] X.Li, S.Q.Lu, M.W.Fu, K.L.Wang, X.J.Dong: J. Mater. Process. Tech.210 (2010) 370. 10.1016/j.jmatprotec.2009.09.026Search in Google Scholar

[17] W.Chen, C.J.Boehlert: Int. J. Fatigue.32 (2010) 627. 10.1016/j.ijfatigue.2009.04.013Search in Google Scholar

[18] S.Tamirisakandala, R.B.Bhat, J.S.Tiley, D.B.Miracle: Scr. Mater.53 (2005) 1421.Search in Google Scholar

[19] S.I.Lieberman, A.M.Gorkhale, S.Tamirisakandala, R.B.Bhat: Mater. Charact.60 (2009) 957. 10.1016/j.matchar.2009.03.013Search in Google Scholar

[20] C.Yolton: JOM56 (2004) 56. 10.1007/s11837-004-0130-6Search in Google Scholar

[21] http://rsbweb.nih.gov/ij/Search in Google Scholar

[22] L.Salvo, P.Cloetens, E.Maire, S.Zabler, J.J.Blandin, J.Y.Buffiere, W.Ludwig, E.Boller, D.Bellet, C.Josseron: Nucl. Instrum. Methods Phys. Res. B200 (2003) 273. 10.1016/S0168-583X(02)01689-0Search in Google Scholar

[23] J.C.Labiche, O.Mathon, S.Pascarelli, M.A.Newton, C.G.Ferre, C.Curfs, G.Vaughan, A.Homs: Rev-Sci. Instr.78 (2007) 091301.Search in Google Scholar

[24] G.Requena, P.Cloetens, W.Altendorfer, C.Poletti, D.Tolnai, F.Warchomicka, H.-P.Degischer: Scr. Mater.61 (2009) 760. 10.1016/j.scriptamat.2009.06.025Search in Google Scholar

[25] C.Poletti, G.Hoetl: Kovove Mater.48 (2010) 87.Search in Google Scholar

[26] J.Ohser, F.MücklichStatistical Analysis of Microstructures in Materials Science, John Wiley Sons, Ltd.England (2000).Search in Google Scholar

[27] C.J.Boehlert, C.J.Cowen, S.Tamirisakandala, D.J.McEldowney, D.B.Miracle: Scr. Mater.55 (2006) 465. 10.1016/j.scriptamat.2006.05.008Search in Google Scholar

[28] K.Geng, W.Lu, D.Zhang, T.Sakata, H.Mori: Materials and Design24 (2003) 409.Search in Google Scholar

[29] K.Geng, W.Lu, D.Zhang: Mater. Sci. Eng. A360 (2003) 176. 10.1016/S0921-5093(03)00437-4Search in Google Scholar

[30] B.S.Li, J.L.Shang, J.J.Guo, H.Z.Fu: Mater. Sci. Eng. A383 (2004) 316. 10.1016/j.msea.2004.04.071Search in Google Scholar

[31] J.Dunkley: Metal Powder Report 57(2002) 20. 10.1016/S0026-0657(02)80554-9Search in Google Scholar

[32] K.Minagawa, H.Kakisawa, Y.Osawa, S.Takamori, K.Halada: Sci. Technol. Adv. Mater.6 (2005) 325. 10.1016/j.stam.2005.03.010Search in Google Scholar

[33] J.H.Chun, C.H.Passow: Production of charged uniformly sized metal droplets. U.S. Patent 5266098.Search in Google Scholar

[34] R.Banerjee, P.C.Collins, A.Genç, H.L.Fraser: Mater. Sci. Eng. A358 (2003) 343. 10.1016/S0921-5093(03)00299-5Search in Google Scholar

Received: 2010-3-1
Accepted: 2010-6-9
Published Online: 2013-05-18
Published in Print: 2010-09-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Hans-Peter Degischer – 65th birthday
  5. Basic
  6. X-ray and neutron imaging – Complementary techniques for materials science and engineering
  7. Fast in-situ X-ray micro tomography characterisation of microstructural evolution and strain-induced damage in alloys at various temperatures
  8. Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys
  9. Influence of stacking fault energy and alloying on stage V hardening of HPT-deformed materials
  10. Thermo-physical properties of silver/carbon fibre composites
  11. Influence of reinforcement contiguity on the thermal expansion of alumina particle reinforced aluminium composites
  12. A continuum based microstructure model of inhomogeneous hardening and recovery as a pre-stage of recrystallization nucleation
  13. Applied
  14. Metal foams – towards microcellular materials
  15. Gigacycle fatigue response of tool steels produced by powder metallurgy compared to ingot metallurgy tool steels
  16. Characterization of the microstructure and damage mechanisms in a Ti6Al4V alloy modified with 1 wt.% B
  17. Structural and age hardening characteristics of near eutectic Al–Si alloys
  18. Stress-corrosion cracking susceptibility of AZ31 alloy after varied heat-treatment in 3.5 wt.% NaCl solution
  19. Tensile deformation behavior of AA5083-H111 at cold and warm temperatures
  20. Experimental investigation of thermal fatigue behaviour of header tube to stub welded joint in power plants
  21. Synthesis and characterization of nanostructured Cu/ZnO/Al2O3 from lyotropic liquid crystalline templates
  22. DGM News
  23. Personal
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110387/html
Scroll to top button