Startseite Technik Heat transfer analysis of special reinforced NSC-columns under severe fire conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Heat transfer analysis of special reinforced NSC-columns under severe fire conditions

  • Panagiotis G. Sismanis
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The 3-D heat conduction equation was numerically solved and the temperature distribution inside two special metallic frames, loaded with the proper number of reinforced bars, encased by normal strength concrete in the final columnar form, and subject to intense fire conditions, was computed by time. Typical temperature profiles were applied for the simulation of the cellulosic and hydrocarbon kinds of fire. Heat transfer by radiation and convection was included in the surrounding the column medium under fire, testing various convective heat-transfer coefficients. Computational results were analyzed until the critical time period in which the integrity and the mechanical strength of the column were reversible, considering fire abatement until that time.


* Correspondence address, Panagiotis Sismanis, Metallurgical Engineer, M. Eng. (1985), PhD (1987), McGill University, Montreal, SIDENOR SA, 57B, Ethnikis Antistasseos Str., 15231 Halandri, Athens, Greece. Tel.: +30 210 678 7747, Mobile: +30 6974 404 747, Fax: +30 210 678 7722, E-mail: ,

References

[1] http://www.sidenor.gr (Reports for SIDEFOR).Suche in Google Scholar

[2] ASTM E 119-00a: Standard Test Methods for Fire Tests of Building Construction and Materials, ASTM International, West Gonshohocken, PA (2000) 21.Suche in Google Scholar

[3] ISO: Fire Resistance Test Elements of Building Construction, International Standard834 (1975).Suche in Google Scholar

[4] EUROCODE 1: ENV 1991-2-2: Basis of Design and Actions on Structures. Part 2.2: Actions on Structures Exposed to Fire.Suche in Google Scholar

[5] UL1709: Rapid Rise Fire Tests of Protection Materials for Structural Steel, Underwriters Laboratory Report (2005).Suche in Google Scholar

[6] K.D.Hertz: Magazine of Concrete Research58 (2006) 43.10.1680/macr.2006.58.1.43Suche in Google Scholar

[7] M.L.Tholen, A.R.Trygestad: Concrete International7 (2007) 45.Suche in Google Scholar

[8] Hellenic Ministry for the Environment, Physical Planning and Public Works: Greek Regulation for the Reinforced Concrete Steels, Athens (2008) (report in Greek).Suche in Google Scholar

[9] P.C.Tatnall: Shotcreet3 (2002) 10.Suche in Google Scholar

[10] G.Khoury: Effect of Heat on Concrete, E & FN Spon publ., Taylor & Francis Group (1998).Suche in Google Scholar

[11] U.Diederichs, U.M.Jumppanen, U.Schneider, in: 4th Weimar Workshop on High Performance Concrete: Material Properties and Design, HAB, Weimar, Germany (1995) 219.Suche in Google Scholar

[12] L.T.Phan: Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art, Building and Fire Research Laboratory, NISTIR 5934, Gaithersburg (1996).10.6028/NIST.IR.5934Suche in Google Scholar

[13] L.T.Phan, N.J.Carino, in: M. Elgaaly (Ed.), ASCE/SEI Structures Congress Proceedings, Philadelphia (2000).Suche in Google Scholar

[14] V.K.R.Kodur, M.A.Sultan: Journal of Materials in Civil Engineering, ASCE2 (2003) 101.10.1061/(ASCE)0899-1561(2003)15:2(101)Suche in Google Scholar

[15] V.K.R.Kodur, T.T.Lie: Canadian Journal of Civil Engineering, 24 (1997) 339.10.1139/cjce-24-3-339Suche in Google Scholar

[16] V.K.R.Kodur, T.C.Wang, F.P.Cheng, M.A.Sultan, in: D.D. Evans (Ed.), Proceedings of the 7th International Symposium, IAFSS (2003) 1013.10.3801/IAFSS.FSS.7-1013.Suche in Google Scholar

[17] V.K.R.Kodur, T.C.Wang, F.P.Cheng: Cement and Concrete Composites Journal26 (2004) 141.10.1016/S0958-9465(03)00089-1Suche in Google Scholar

[18] R.H.Iding, B.Bresler, Z.Nizamuddin: FIRES-T3-A Computer Program for the Fire Response of Structures-Thermal (3-dimensional version), University of California at Berkeley (UCB), UCB-FRG Report 77-15 (1977).Suche in Google Scholar

[19] E.Sterner, U.Wickström: TASEF-Temperature Analysis of Structures Exposed to Fire, SP Report 1990:05, Swedish National Testing and Research Institute, Boras (1990).Suche in Google Scholar

[20] U.Wickström, J.Palsson: Scheme for Verification of Computer Codes for Calculating Temperature in Fire Exposed Structures, SP Swedish Testing and Research Institute, SP Report 1999:36, Boras (1999).Suche in Google Scholar

[21] R.Rudolphi, R.Müller: ALGOL-Computerprogramm zur Berechnung zwei-dimensionaler instationärer Temperaturverteilungen mit Anwendungen aus dem Brand- und Wärmeschutz, BAM-Forschungsbericht74 (1980).Suche in Google Scholar

[22] R.Rudolphi, R.Müller: Bauphysikalische Temperaturberechnungen in FORTRAN, Band 1, B.G. Teubner, Stuttgart (1985).10.1007/978-3-322-91865-9Suche in Google Scholar

[23] R.Rudolphi, R.Müller: Program INSTATCP for the 3D-computation of temperatures under transient boundary conditions using Delphi and Windows, Federal Institute for Materials Research and Testing, BAM VII.0, Berlin (2003).Suche in Google Scholar

[24] Comite Euro-International du Beton (CEB): Bulletin d'Information No. 145, Bureau de Paris (1982).Suche in Google Scholar

[25] A.H.Varma, J.Srisa-Ard, S.Hong, in: G.E.Blandford (Ed.), Structures 2004 – Building On The Past: Securing The Future, ASCE (2004) 1.Suche in Google Scholar

[26] R.J.Y.Liew, K.Y.Ma, in: A.Buchanan (Ed.), Second International Workshop “Structures in Fire”, Christchurch, New Zealand (2002) 303.Suche in Google Scholar

[27] V.A.Narang: Heat transfer analysis in steel structures, Master of Science thesis, Worcester Polytechnic Institute (2005).Suche in Google Scholar

[28] R.G.Gewain, E.W.J.Troup: Engineering Journal2 (2001) 78.Suche in Google Scholar

[29] I.D.Bennetts, C.C.Goh: El. J. of Structural Engineering1 (2001) 38.Suche in Google Scholar

[30] P.C.R.Collier: Firebarrier Technical Reference Guide, BRANZ Study Report No. 127, New Zealand (2004).Suche in Google Scholar

[31] J.A.Kirby: Super-convergence and Error Estimation of Finite Element Solutions to Fire-exposed Frame Problems, Ph.D. thesis, Brunel University, UK (2006).Suche in Google Scholar

[32] P.G.Sismanis: Mathematical Review (Lahglasijg′ Essihex′qgrg), 2008. (in Greek)Suche in Google Scholar

[33] S.V.Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington (1980).Suche in Google Scholar

[34] F.P.Incropera, D.P.DeWitt: Fundamentals of Heat Transfer, John Wiley & Sons, Inc., New York (1981).Suche in Google Scholar

[35] H.S.Carslaw, J.C.Jaeger: Conduction of Heat in Solids, Oxford University Press, New York (1986).Suche in Google Scholar

[36] EUROCODE 3: Design of Steel Structures, Part 1–2: General Rules: Structural Fire Design (1993).Suche in Google Scholar

[37] EUROCODE 2: Design of Concrete Structures, EN 1992-1-2: 2004 (GR) 32.Suche in Google Scholar

[38] D.A.Anderson, J.C.Tannehill, R.H.Pletcher: Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corporation, Washington (1984).Suche in Google Scholar

[39] M.James, G.M.Smith, J.C.Wolford: Applied Numerical Methods for Digital Computation with FORTRAN and CSMP, Harper & Row Publishers, New York (1977).Suche in Google Scholar

[40] D.Drysdale: Introduction to Fire Dynamics, Wiley (1998).Suche in Google Scholar

[41] EUROCODE 2: Design of concrete structures, Part 1.2: General rules-Structural fire design, ENV 1992-1-2 (1996).Suche in Google Scholar

[42] Arup Fire: Fire resistance of concrete enclosures, Work Packages 5–6, Heat transfer modelling to two of the HSE design fires, Job no. 116718 (2005).Suche in Google Scholar

[43] EN 10080: Steel for the reinforcement of concrete-Weldable reinforcing steel-General (2005).Suche in Google Scholar

[44] M.Economopoulos, Y.Respen, G.Lessel, G.Steffes: Metallurgical Reports C.R.M. (1975) 3.Suche in Google Scholar

Received: 2007-11-5
Accepted: 2009-9-2
Published Online: 2013-06-11
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. The study of recrystallisation and crystallographic texture genesis in industrial steels
  5. Properties of copper composites strengthened by nano- and micro-sized Al2O3 particles
  6. High temperature stability of Cr-carbides in an experimental Co–Re-based alloy
  7. Growth and structure of NdGaO3 films prepared by metal–organic deposition
  8. On the composition and pressure dependence of the self-diffusion coefficient in liquid metals
  9. The relationship between the microstructure and the magnetic properties of nano-scale magnetic particles in a Cu–Fe–Co ternary alloy
  10. The microstructure and magnetic properties of nano-scale Fe magnetic particles precipitated in a Cu–Fe alloy
  11. The effect of grain size on the corrosion inhibitor adsorption of nanocrystalline iron metal
  12. Applied
  13. In-situ observation of creep damage evolution in Al–Al2O3 MMCs by synchrotron X-ray microtomography
  14. The effect of grain refiner and combined electro-magnetic field on grain evolution of horizontal direct chill casting 7075 aluminum alloy
  15. Luminescence of aqueous reactions derived NiWO4 powders and sol-gel deposited films
  16. Thermo-mechanical modeling of friction stir welding
  17. Phase transformation temperatures of pure iron and low alloyed steels in the low temperature region using DTA
  18. Effect of ECAE conditions on the microstructure, texture and mechanical properties of an extruded Mg–Zn–Y–Zr alloy
  19. Heat transfer analysis of special reinforced NSC-columns under severe fire conditions
  20. High-speed milling strategies in mould manufacturing
  21. Effect of solution heat treatment on the age hardening capacity of dendritic and globular AlSi7Mg0.6 alloys
  22. Notification
  23. DGM News
Heruntergeladen am 1.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110290/html
Button zum nach oben scrollen