Startseite Technik High temperature stability of Cr-carbides in an experimental Co–Re-based alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High temperature stability of Cr-carbides in an experimental Co–Re-based alloy

  • Debashis Mukherji , Michael Klauke , Pavel Strunz , Ivo Zizak , Gerhard Schumacher , Albrecht Wiedenmann und Joachim Rösler
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The stability of the microstructure at high temperatures was studied in an experimental Co–Re-based alloy. The experimental alloy is mainly strengthened by Cr-carbides, particularly by those in the form of thin lamellar plates. Electron microscopic investigation on samples exposed for up to 1 000 h to temperatures of 1 000 and 1 200 °C showed that Cr23C6 type carbides present in the alloy in different morphologies are unstable at these temperatures. It was also observed that the alloy hardness dropped after exposing the samples to elevated temperatures and much of this loss occurred within the first 100 h. In-situ diffraction measurements with synchrotron radiation showed that carbide dissolution started as early as 3 h of holding at 1 000 °C. Moreover, in-situ small angle neutron scattering results indicated that the carbides at the grain boundaries and the blocky carbides dissolve first and then the thin lamellar carbides. Further, the enrichment of Cr in the Co-matrix phase, which took place due to the dissolution of Cr-carbides, stabilized a Cr–Re-rich σ phase. Although the dissolution of lamellar carbides results in a significant loss of strength, the formation of σ phase with extremely high hardness partly compensated the for loss. The σ phase is stable even at 1 200 °C.


* Correspondence address, Dr. Debashis Mukherji, Technical University Braunschweig, IfW, Langer Kamp 8, D-38106 Braunschweig, Germany, Tel.: +49 531 391 3062, Fax: +49 531 391 3058, E-mail:

References

[1] F.W.Zok, C.G.Levi: Adv. Eng. Mater.3 (2001) 15. 10.1002/1527-2648(200101)3:1/2<15::AID-ADEM15>3.0.CO;2-ASuche in Google Scholar

[2] M.Rosefort, C.Dahmen, A.Bührig-Polaczek, W.Hu, H.Chen, Y.Zhong, G.Gottstein, D.Hajas, J.M.Schneider: Adv. Eng. Mater.8 (2006) 730. 10.1002/adem.200600004Suche in Google Scholar

[3] G.Leichtfried, J.H.Schneibel, M.Heilmaier: Metall. Mater. Trans. A37 (2006) 2955. 10.1007/s11661-006-0177-9Suche in Google Scholar

[4] J.Rüsler, D.Mukherji, T.Baranski: Adv. Eng. Mater.9 (2007) 876. 10.1002/adem.200700132Suche in Google Scholar

[5] Project webpage – Beyond Ni-Base Superalloys – DFG Forschergruppe 727, http://www.uni-magdeburg.de/iwf/fg_727/Suche in Google Scholar

[6] F.A.Schweizer, D.N.Duhl: Single crystal nickel superalloy, United States Patent 4222794 (1980).Suche in Google Scholar

[7] W.S.Walston, J.C.Schaeffer, W.H.Murphy, in: R.D.Kissinger, D.J.Deye, D.L.Anton, A.D.Cetel, M.V.Nathal, T.M.Pollock, D.A.Woodford (Eds.), Superalloys, TMS, Warrendale, PA (1996) 9.Suche in Google Scholar

[8] U.Keiderling, A.Wiedenmann: Physica B213-214 (1995) 895. 10.1016/0921-4526(95)00316-2Suche in Google Scholar

[9] P.Strunz, K.Mortensen, S.Janssen: Physica B350 (2004) e783. 10.1016/j.physb.2004.03.204Suche in Google Scholar

[10] Hahn-Meitner-Institute: U.S.E. Handbook version 2000.6, http://www.hmi.de/bensc/sample-env/USE2000_6.pdfSuche in Google Scholar

[11] Bessy KMC-2 beamline diffractometer, http://www.bessy.de/bit/bit_show_object.pdf.phpSuche in Google Scholar

[12] H.M.Reitveld: J. Appl. Cryst.2 (1969) 65. 10.1107/S0021889869006558Suche in Google Scholar

[13] T.B.Massalski (Ed.): Binary Alloy Phase Diagrams, ASM, Ohio (1986) 793.Suche in Google Scholar

[14] E.M.Sokolovskaya, M.L.Tuganbaev, G.I.Stepanova, E.F.Kazakova, I.G.Sokolova: J. Less-Common Met.124 (1986) L5. 10.1016/0022-5088(86)90502-3Suche in Google Scholar

[15] J.Kohlbrecher, PSI Villigen, private communication, (2007). http://kur.web.psi.ch/sans1/SANSSoft/sasfit.htmlSuche in Google Scholar

[16] G.Kostorz, in: R.W.Cahn, P.Haasen (Eds.), X-ray and neutron scattering, Chapter 12 in Physical Metallurgy, 4th ed., North-Holland, Amsterdam, 1996, p. 1115.10.1016/B978-044489875-3/50017-XSuche in Google Scholar

[17] P.Strunz, R.Gilles, D.Mukherji, A.Wiedenmann: J. Appl. Cryst.36 (2003) 854. 10.1107/S0021889803001705Suche in Google Scholar

Received: 2008-10-14
Accepted: 2009-5-13
Published Online: 2013-06-11
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. The study of recrystallisation and crystallographic texture genesis in industrial steels
  5. Properties of copper composites strengthened by nano- and micro-sized Al2O3 particles
  6. High temperature stability of Cr-carbides in an experimental Co–Re-based alloy
  7. Growth and structure of NdGaO3 films prepared by metal–organic deposition
  8. On the composition and pressure dependence of the self-diffusion coefficient in liquid metals
  9. The relationship between the microstructure and the magnetic properties of nano-scale magnetic particles in a Cu–Fe–Co ternary alloy
  10. The microstructure and magnetic properties of nano-scale Fe magnetic particles precipitated in a Cu–Fe alloy
  11. The effect of grain size on the corrosion inhibitor adsorption of nanocrystalline iron metal
  12. Applied
  13. In-situ observation of creep damage evolution in Al–Al2O3 MMCs by synchrotron X-ray microtomography
  14. The effect of grain refiner and combined electro-magnetic field on grain evolution of horizontal direct chill casting 7075 aluminum alloy
  15. Luminescence of aqueous reactions derived NiWO4 powders and sol-gel deposited films
  16. Thermo-mechanical modeling of friction stir welding
  17. Phase transformation temperatures of pure iron and low alloyed steels in the low temperature region using DTA
  18. Effect of ECAE conditions on the microstructure, texture and mechanical properties of an extruded Mg–Zn–Y–Zr alloy
  19. Heat transfer analysis of special reinforced NSC-columns under severe fire conditions
  20. High-speed milling strategies in mould manufacturing
  21. Effect of solution heat treatment on the age hardening capacity of dendritic and globular AlSi7Mg0.6 alloys
  22. Notification
  23. DGM News
Heruntergeladen am 1.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110282/html
Button zum nach oben scrollen