Startseite Technik The effect of grain size on the corrosion inhibitor adsorption of nanocrystalline iron metal
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The effect of grain size on the corrosion inhibitor adsorption of nanocrystalline iron metal

  • Vahid Afshari und Changiz Dehghanian
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effect of grain size reduction on the corrosion inhibitor adsorption of nanocrystalline Fe produced by pulse electrodeposition was characterized using tafel polarization curves and electrochemical impedance spectroscopy. The grain size of a nanocrystalline surface was determined by means of scanning electron microscopy. The tests were carried out in 0.1 M sodium perchlorate (NaClO4) and 0.1 M sodium sulphate (Na2SO4) aqueous solutions separately. Results obtained revealed that the inhibition effect and corrosion protection of sodium nitrite inhibitor in near-neutral aqueous solutions increased as the grain size decreased from microcrystalline to nanocrystalline. This was attributed to the increased number of the active sites caused by nanocrystalline surface.


* Correspondence address, Vahid Afshari, School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran. Tel.: +98 91 23 456 449, Fax: +98 21 88 006 076, E-mail:

References

[1] E.Thiele, R.Klemm, L.Hollang, C.Holste, N.Schell, H.Natter, R.Hempelmann: Mater. Sci. Eng. A390 (2005) 42.10.1016/j.msea.2004.09.022Suche in Google Scholar

[2] B.Yang, H.Vehoff, R.Hempelmann: Int. J. Mater. Res.97 (2006) 1220.Suche in Google Scholar

[3] H.Gleiter: Adv. Mater.4 (1992) 474.10.1002/adma.19920040704Suche in Google Scholar

[4] H.Gleiter: Acta Mater.48 (2000) 1.10.1016/S1359-6454(99)00285-2Suche in Google Scholar

[5] G.Eichkon, W.J.Lorenz: Naturwissenschaften.52 (1965) 618.10.1007/BF00622133Suche in Google Scholar

[6] W.J.Lorenz, G.Eichkon: J. Electrochem. Soc.112 (1965) 1225.Suche in Google Scholar

[7] W.J.Lorenz, G.Eichkon, B.Bunsenges: Phys. Chem.70 (1966) 99.Suche in Google Scholar

[8] G.Eichkon, W.J.Lorenz, L.Albert, H.Fischer: Electrochim. Acta.13 (1968) 183.10.1016/0013-4686(68)80020-9Suche in Google Scholar

[9] G.Eichkon, W.J.Lorenz: Z. Metalloberfläche.22 (1968) 102.Suche in Google Scholar

[10] W.J.Lorenz: Das elektrochemische Verhalten des aktiven Reineisens in sauren Lösungen, Habilitationsschrift, Universitat Karlsruhe (1968).Suche in Google Scholar

[11] F.Hilbert, Y.Miyoshi, G.Eichkon, W.J.Lorenz: J. Electrochem. Soc.118 (1971) 1919.10.1149/1.2407868Suche in Google Scholar

[12] H.Rosswag, G.Eichkon, W. J.Lorenz: Werkst. Korro.25 (1974) 86.10.1002/maco.19740250204Suche in Google Scholar

[13] A.Akiyama, R.E.Patterson, K.H.Nobe: Corrosion.26 (1970) 51.Suche in Google Scholar

[14] G.Bech-Nielsen: Electrochim. Acta.19 (1974) 821.10.1016/0013-4686(74)85027-9Suche in Google Scholar

[15] Y.Li, F.Wang, G.Liu: Corrosion60 (2004) 10.Suche in Google Scholar

[16] R.Rofagha, R.Langer, A.M.El-Sherik, U.Erb, G.Palumbo, A.K.Aust: Scripta. Metall. Mater.25 (1991) 2867.10.1016/0956-716X(91)90171-VSuche in Google Scholar

[17] R.Rofagha, S.J.Splinter, U.Erb: Nanostruct. Mater.4 (1994) 69.10.1016/0965-9773(94)90129-5Suche in Google Scholar

[18] S.Wang, R.Rofagha, P.R.Roberge, U.Erb: Electrochem. Soc. Proc.224 (1995) 9598.10.1149/1.2044257Suche in Google Scholar

[19] S.Wang: Electrochemical Properties of Nanocrystalline Nickel and Nickel-Molybdenum Alloys, Ph.D. Thesis, Queen's University, Kingston, Ontario, Canada (1997).Suche in Google Scholar

[20] I.L.Rozenfeld: Corrosion Inhibitor, McGraw-Hill, New York (1981).Suche in Google Scholar

[21] G.Moretti, F.G.Grion: Corrosion Science, 46 (2003) 387.10.1016/S0010-938X(03)00150-1Suche in Google Scholar

[22] A.Popova, E.Sokolova, S.Raicheva, M.Christov: Corr. Sci.45 (2003) 33.10.1016/S0010-938X(02)00072-0Suche in Google Scholar

[23] H.Gohr, J.Schaller, C.A.Schiller: Electrochim. Acta38 (1993) 1961.10.1016/0013-4686(93)80323-RSuche in Google Scholar

[24] M.Kliskic, J.Radosevic, S.Gudic, V.Katalinic: J. Appl. Electrochem.30 (2000) 823.10.1023/A:1004041530105Suche in Google Scholar

[25] K.Babic-Samardzija, N.Hackerman: Anti-Corros. Method Mater.53 (2006) 19.Suche in Google Scholar

[26] K.N.Mohana, A.M.Badiea: Corrosion Science50 (2008) 29392947.10.1016/j.corsci.2008.07.002Suche in Google Scholar

[27] C.Joseph, E.Becker, A.Nason, in: Third Eur. Symp. Corr. Inhib., Univ. Ferrara (1970) 791.Suche in Google Scholar

[28] J.OÕM.Bockris, D.Drazic, A.R.Despic: Electrochim. Acta4 (1961) 325.Suche in Google Scholar

[29] U.Ebersbach, K.Schwabe, K.Ritter, Electrochim. Acta12 (1967) 927.10.1016/0013-4686(67)80093-8Suche in Google Scholar

[30] A.A. ElMiligy, D.Geana, W.J.Lorenz: Electrochim. Acta20 (1975) 273.10.1016/0013-4686(75)90005-5Suche in Google Scholar

[31] A.B.Anderson, N.C.Debnath: J. Am. Chem. Soc.105 (1983) 18.10.1021/ja00339a005Suche in Google Scholar

[32] H.Bala: Electrochim. Acta29 (1984) 119.10.1016/0013-4686(84)80050-XSuche in Google Scholar

[33] A.Balyanov, J.Kutnyakova, N.A.Amirkhanova: Scripta.Mater.51 (2004) 225.10.1016/j.scriptamat.2004.04.011Suche in Google Scholar

[34] A.L.Greer: Mechanical properties and deformation behavior of materials having ultra-fine microstructures (1993) 5377.10.1007/978-94-011-1765-4_3Suche in Google Scholar

[35] M.C.Daniel, D.Astruc: Chem. Rev.104 (2004) 293346.PMid:14719978;10.1021/cr030698Suche in Google Scholar

[36] N.Lopez, J.K.Norskov: Abs. Paper Am. Chem. Soc.225 (2003) U688.Suche in Google Scholar

[37] W.J.Sommer, M.Crne, M.Weck: Abs. Paper Am. Chem. Soc.225 (2003) U130.Suche in Google Scholar

[38] S.Zhai, Y.Zhang, X.Shi, D.Wu, Y.H.Sun, Y.Shan, M.Y.He: Catal. Lett.93 (2004) 225229.DOI:10.1023/B:CATL.0000017080.21934.9710.1023/B:CATL.0000017080.21934.97Suche in Google Scholar

[39] P.Bowen, C.Carry: Powder Technol.128 (2002) 248255.DOI:10.1016/S0032-5910(02)00183-310.1016/S0032-5910(02)00183-3Suche in Google Scholar

[40] C.Goujon, P.Goeuriot: Mater. Sci. Eng. A315 (2001) 180188.DOI:10.1016/S0921-5093(01)01139-X10.1016/S0921-5093(01)01139-XSuche in Google Scholar

[41] Nihara, K.Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi: J. Ceram. Soc. Jpn.99 (1991) 974982.10.2109/jcersj.99.974Suche in Google Scholar

Received: 2008-9-4
Accepted: 2009-8-31
Published Online: 2013-06-11
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. The study of recrystallisation and crystallographic texture genesis in industrial steels
  5. Properties of copper composites strengthened by nano- and micro-sized Al2O3 particles
  6. High temperature stability of Cr-carbides in an experimental Co–Re-based alloy
  7. Growth and structure of NdGaO3 films prepared by metal–organic deposition
  8. On the composition and pressure dependence of the self-diffusion coefficient in liquid metals
  9. The relationship between the microstructure and the magnetic properties of nano-scale magnetic particles in a Cu–Fe–Co ternary alloy
  10. The microstructure and magnetic properties of nano-scale Fe magnetic particles precipitated in a Cu–Fe alloy
  11. The effect of grain size on the corrosion inhibitor adsorption of nanocrystalline iron metal
  12. Applied
  13. In-situ observation of creep damage evolution in Al–Al2O3 MMCs by synchrotron X-ray microtomography
  14. The effect of grain refiner and combined electro-magnetic field on grain evolution of horizontal direct chill casting 7075 aluminum alloy
  15. Luminescence of aqueous reactions derived NiWO4 powders and sol-gel deposited films
  16. Thermo-mechanical modeling of friction stir welding
  17. Phase transformation temperatures of pure iron and low alloyed steels in the low temperature region using DTA
  18. Effect of ECAE conditions on the microstructure, texture and mechanical properties of an extruded Mg–Zn–Y–Zr alloy
  19. Heat transfer analysis of special reinforced NSC-columns under severe fire conditions
  20. High-speed milling strategies in mould manufacturing
  21. Effect of solution heat treatment on the age hardening capacity of dendritic and globular AlSi7Mg0.6 alloys
  22. Notification
  23. DGM News
Heruntergeladen am 1.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110289/html
Button zum nach oben scrollen