Startseite Technik Properties of copper composites strengthened by nano- and micro-sized Al2O3 particles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Properties of copper composites strengthened by nano- and micro-sized Al2O3 particles

  • Viseslava Rajkovic , Dusan Bozic und Milan T. Jovanovic
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Electrolytic copper powder, inert gas atomized prealloyed copper powder containing 3.5 wt.% Al, and a mixture of copper and commercial Al2O3 powder particles (4 wt.% Al2O3) were milled separately in a high-energy planetary ball mill for up to 20 h in air. The milling was performed in order to strengthen the copper matrix by grain size refinement and Al2O3 particles. Milling in air of prealloyed copper powder promoted formation of fine dispersed Al2O3 particles by internal oxidation. Hot-pressing (800 °C for 3 h in argon at a pressure of 35 MPa) was used for compaction of milled powders. Compacts from 5 and 20 h milled powders were additionally subjected to high temperature exposure (800 °C for 1 and 5 h in argon) in order to examine their thermal stability and electrical conductivity. The effect of different size and the amount of Al2O3 particles on strengthening, thermal stability and electrical conductivity of the copper-based composites was studied. The results were discussed in terms of the effects of the grain size refinement along with micro- and nano-sized Al2O3 particles on the strengthening of the copper matrix.


* Correspondence address, Dr. Milan T. Jovanovic, Institute of Nuclear Sciences “Vinca”, P.O. Box 522, 11001 Belgrade, Serbia. Tel.: +381 11 24-39-45-4, Fax: +381 11 24-39-45-4. E-mail:

References

[1] V.M.RajkovićM.V.Mitkov: Int. J. Powder Metall.36 (2000) 45.Suche in Google Scholar

[2] A.Upadhyaya, G.S.Upadhyaya: Mater. Disign16 (1995) 41.10.1016/0261-3069(95)00006-KSuche in Google Scholar

[3] R.H.Palma, A.O.Sepulveda: Mater. Sci. Forum416–418 (2003) 162.Suche in Google Scholar

[4] J.Naser, J.W.Riehemann, H.Ferkel: Mater. Sci. Eng. A234–236 (1997) 467.10.1016/S0921-5093(97)00269-4Suche in Google Scholar

[5] J.H.Ahn, I.H.Song, Y.D.Hahn: Mater. Trans. JIM37 (1996) 733.Suche in Google Scholar

[6] C.Jianyi, W.Mingpu, L.Z.W.Yanhui, in: China-EU Forum on Nanosized Technology, Beijing, P.R. China (2002).Suche in Google Scholar

[7] B.Tian, P.Liu, K.Song, Y.Li, F.Ren, J.Su: Mater. Sci. Eng. A435–436 (2006) 705.10.1016/j.msea.2006.07.129Suche in Google Scholar

[8] K.G.Williams, H.W.Hall: Acta Met.1 (1953) 22.10.1016/0001-6160(53)900066Suche in Google Scholar

[9] B.Lonnberg: Mater. Sci.29 (1994) 3224.10.1007/BF00356667Suche in Google Scholar

[10] V.Rajkovic, O.Eric, D.Bozic, M.Mitkov, E.Romhanji: Sci. of Sintering36 (2004) 205.10.2298/SOS0403205RSuche in Google Scholar

[11] A.V.Nadkarni, J.E.Synk: Metals Handbook, Powder Metallurgy ASM, Metals Park, OH (1984).Suche in Google Scholar

[12] M.L.Mehta, T.K.A.Ghudbban, M.S.B.Eltalhi, N.E.A.Erabiy: Powder Metall. Int.22 (1990) 15.Suche in Google Scholar

[13] V.Rajkovic, D.Bozic, M.T.Jovanovic, in: E.Romhanji, M.T.Jovanovic (Ed.), Deformation processing and Structure of Materials, Belgrade, Serbia (2007) 263.Suche in Google Scholar

[14] P.R.Mould, P.Cotterill: J. Mater. Sci.2 (1967) 241.10.1007/BF00555381Suche in Google Scholar

[15] O.Preston, N.J.Grant: Trans. Met. Soc. AIME221 (1961) 164.Suche in Google Scholar

[16] E.Botcharova, J.Freudenberg, L.Schult: Acta. Mater.54 (2006) 3333.10.1016/j.actamat.2006.03.021Suche in Google Scholar

[17] N.J.Grant, A.Lee, M.Lou, in: Proc. Con. on High Conductivity Copper and Aluminium Alloys, California (1984) 103.Suche in Google Scholar

Received: 2008-3-10
Accepted: 2009-5-5
Published Online: 2013-06-11
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Basic
  4. The study of recrystallisation and crystallographic texture genesis in industrial steels
  5. Properties of copper composites strengthened by nano- and micro-sized Al2O3 particles
  6. High temperature stability of Cr-carbides in an experimental Co–Re-based alloy
  7. Growth and structure of NdGaO3 films prepared by metal–organic deposition
  8. On the composition and pressure dependence of the self-diffusion coefficient in liquid metals
  9. The relationship between the microstructure and the magnetic properties of nano-scale magnetic particles in a Cu–Fe–Co ternary alloy
  10. The microstructure and magnetic properties of nano-scale Fe magnetic particles precipitated in a Cu–Fe alloy
  11. The effect of grain size on the corrosion inhibitor adsorption of nanocrystalline iron metal
  12. Applied
  13. In-situ observation of creep damage evolution in Al–Al2O3 MMCs by synchrotron X-ray microtomography
  14. The effect of grain refiner and combined electro-magnetic field on grain evolution of horizontal direct chill casting 7075 aluminum alloy
  15. Luminescence of aqueous reactions derived NiWO4 powders and sol-gel deposited films
  16. Thermo-mechanical modeling of friction stir welding
  17. Phase transformation temperatures of pure iron and low alloyed steels in the low temperature region using DTA
  18. Effect of ECAE conditions on the microstructure, texture and mechanical properties of an extruded Mg–Zn–Y–Zr alloy
  19. Heat transfer analysis of special reinforced NSC-columns under severe fire conditions
  20. High-speed milling strategies in mould manufacturing
  21. Effect of solution heat treatment on the age hardening capacity of dendritic and globular AlSi7Mg0.6 alloys
  22. Notification
  23. DGM News
Heruntergeladen am 1.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110278/html
Button zum nach oben scrollen