Home Technology The relationship between the microstructure and the magnetic properties of nano-scale magnetic particles in a Cu–Fe–Co ternary alloy
Article
Licensed
Unlicensed Requires Authentication

The relationship between the microstructure and the magnetic properties of nano-scale magnetic particles in a Cu–Fe–Co ternary alloy

  • Naoya Wada , Yoshiharu Azuma , Mahoto Takeda and Zenji Hiroi
Published/Copyright: June 11, 2013

Abstract

The relationship between the microstructures and the properties of nano-scale Fe–Co magnetic particles formed in a copper alloy was investigated. Several structural aspects and physical properties of Fe–Co precipitates were investigated simultaneously using transmission electron microscopy, high resolution transmission electron microscopy, and superconducting quantum interference device magnetometry. The microstructure and magnetic properties of precipitates comprising both Fe and Co atoms evolved with isothermal annealing at 873 K. We found that the evolution of small coherent precipitates obeys the Ostwald ripening law; however, the coarsening rate of the particles increased after coherent particles transformed into incoherent precipitates. The coercive force varied, correlating with the evolution of precipitates.


* Correspondence address, Associate Prof. Mahoto Takeda, Department of Mechanical Engineering and Materials Science (SEISAN), Yokohama National University79-5 Tokiwadai Hodogaya, Yokohama 240-8501, Japan. Tel.: +81 45 339 3855, Fax: +81 45 339 3855. E-mail:

References

[1] A.E.Berkowitz, J.R.Mitchell, M.J.Carey, A.P.Young, S.Zhang, F.E.Spada, F.T.Parkar, A.Hutten, G.Thomas: Phys. Rev. B68 (1992) 3745. PMid:10045786; 10.1103/PhysRevLett.68.3745Search in Google Scholar

[2] Y.Tsunoda: J. Phys. Cond. Matt.1 (1989) 10427.10.1088/0953-8984/1/51/015Search in Google Scholar

[3] H.Kubo, V.Uchimoto, K.Shimizu: Metal Schi. J.9 (1985) 153.Search in Google Scholar

[4] S.C.Abrahams: Phys. Rev.127 (1962) 2052.10.1103/PhysRev.127.2052Search in Google Scholar

[5] M.Takeda, K.Inukai, N.Suzuki, G.Shinohara, H.Hashimoto: Phys. Stat. Sol. (a)158 (1996) 39.10.1002/pssa.2211580106Search in Google Scholar

[6] M.Takeda, N.Suzuki, G.Shinohara, T.Endo, J.Van Landuyt: Phys. Stat. Sol. (a)168 (1998) 27.10.1002/(SICI)1521-396X(199807)168:1<27::AID-PSSA27>3.0.CO;2-SSearch in Google Scholar

[7] M.Takeda, H.Yamada, S.Yoshida, T.Endo, J.Van Landuyt: Phys. Stat. Sol. (a)198 (2003) 436.10.1002/pssa.200306634Search in Google Scholar

[8] M.Shiga, M.Yamamoto: J. Phys. Condens. Matter13 (2001) 6359.10.1088/0953-8984/13/29/306Search in Google Scholar

[9] T.Fujita, S.Nishimura, T.Fujinami, K.Kaneko, Z.Horita, D.J.Smith: Mater. Sci. Eng. A417 (2006) 149.10.1016/j.msea.2005.11.008Search in Google Scholar

[10] S.Onaka, N.Kobayashi, T.Fujita, M.Kato: Mater. Sci. Eng. A347 (2003) 42.10.1016/S0921-5093(02)00559-2Search in Google Scholar

[11] J.D.Livingston: Trans. Amer. Inst. Min. Metall.215 (1959) 566.Search in Google Scholar

[12] A.J.Ardell, R.B.Nicholson: J. Phys. Chem. Solids27 (1966) 1793.10.1016/0022-3697(66)90110-7Search in Google Scholar

[13] S.Iwamura, Y.Miura: Acta Mater.52 (2004) 591.10.1016/j.actamat.2003.09.042Search in Google Scholar

[14] N.Kuwano, S.Matsumira, H.Nakagawa, M.Watari, Y.Tomokiyo, K.Oki: in Proc. Int. Conf. on Martensitic Transformation, ICOMAT-86, 355. Japan Inst. Of Metal, Sendai, Japan (1986) 355.Search in Google Scholar

[15] F.E.Luborsky, T.O.Paine: J. Appl. Phys.31 (1960) 68S.10.1063/1.1984606Search in Google Scholar

[16] C.Watanabe, D.WatnabeR.Monzen: J. Mater. Sci.43 (2008) 3817.10.1007/s10853-007-2290-6Search in Google Scholar

Received: 2008-9-26
Accepted: 2009-8-3
Published Online: 2013-06-11
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Basic
  4. The study of recrystallisation and crystallographic texture genesis in industrial steels
  5. Properties of copper composites strengthened by nano- and micro-sized Al2O3 particles
  6. High temperature stability of Cr-carbides in an experimental Co–Re-based alloy
  7. Growth and structure of NdGaO3 films prepared by metal–organic deposition
  8. On the composition and pressure dependence of the self-diffusion coefficient in liquid metals
  9. The relationship between the microstructure and the magnetic properties of nano-scale magnetic particles in a Cu–Fe–Co ternary alloy
  10. The microstructure and magnetic properties of nano-scale Fe magnetic particles precipitated in a Cu–Fe alloy
  11. The effect of grain size on the corrosion inhibitor adsorption of nanocrystalline iron metal
  12. Applied
  13. In-situ observation of creep damage evolution in Al–Al2O3 MMCs by synchrotron X-ray microtomography
  14. The effect of grain refiner and combined electro-magnetic field on grain evolution of horizontal direct chill casting 7075 aluminum alloy
  15. Luminescence of aqueous reactions derived NiWO4 powders and sol-gel deposited films
  16. Thermo-mechanical modeling of friction stir welding
  17. Phase transformation temperatures of pure iron and low alloyed steels in the low temperature region using DTA
  18. Effect of ECAE conditions on the microstructure, texture and mechanical properties of an extruded Mg–Zn–Y–Zr alloy
  19. Heat transfer analysis of special reinforced NSC-columns under severe fire conditions
  20. High-speed milling strategies in mould manufacturing
  21. Effect of solution heat treatment on the age hardening capacity of dendritic and globular AlSi7Mg0.6 alloys
  22. Notification
  23. DGM News
Downloaded on 2.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110287/html?lang=en
Scroll to top button