Home The role of defects in resistively switching chalcogenides
Article
Licensed
Unlicensed Requires Authentication

The role of defects in resistively switching chalcogenides

  • Rainer Waser , Regina Dittmann , Martin Salinga and Matthias Wuttig
Published/Copyright: May 15, 2013
Become an author with De Gruyter Brill

Abstract

This overview describes the present understanding of resistive switching phenomena encountered in chalcogenide-based cells which may be utilized in energy-efficient non-volatile memory devices and in array-based logic applications. We introduce the basic operation principle of the phase change mechanism, the thermochemical mechanism, and the valence change mechanism and we discuss the crucial role of structural defects in the switching processes. We show how this role is determined by the atomic structure of the defects, the electronic defect states, and/or the ion transport properties of the defects. The electronic structure of the systems in different resistance states is described in the light of the chemical bonds involved. While for phase change alloys the interplay of ionicity and hybridization in the crystalline and in the amorphous phase determine the resistances, the local redox reaction at the site of extended defects, the change in the oxygen stoichiometry, and the resulting change in the occupancy of relevant orbitals play the major role in transition metal oxides which switch by the thermochemical and the valence change mechanism. Phase transformations are not only discussed for phase change alloys but also for redox-related switching processes. The switching kinetics as well as the ultimate scalability of switching cells are related to structural defects in the materials.


Correspondence address, Professor Rainer Waser Institut für Werkstoffe der Elektrotechnik, RWTH Aachen 52072 Aachen, Germany E-mail:

References

[1] A.H.Wilson: Proceedings of the Royal Society of London 133 (1931) 458.10.1098/rspa.1931.0162Search in Google Scholar

[2] C.Wagner, W.Schottky: Zeitschrift für Physikalische Chemie11 (1930) 163.Search in Google Scholar

[3] T.W.Hickmott: J. Appl. Phys.33 (1962) 2669.10.1063/1.1702530Search in Google Scholar

[4] J.F.Gibbons, W.E.Beadle: Solid-State Electron.7 (1964) 785.10.1016/0038-1101(64)90131-5Search in Google Scholar

[5] W.R.Hiatt, T.W.Hickmott: Appl. Phys. Lett.6 (1965) 106.10.1063/1.1754187Search in Google Scholar

[6] S.R.Ovshinsky: Phys. Rev. Lett.21 (1968) 1450.10.1103/PhysRevLett.21.1450Search in Google Scholar

[7] G.Dearnaley, A.M.Stoneham, D.V.Morgan: Rep. Prog. Phys.33 (1970) 1129.10.1088/0034-4885/33/3/306Search in Google Scholar

[8] D.P.Oxley: Electrocomponent Science and Technology, UK3 (1977) 217.10.1155/APEC.3.217Search in Google Scholar

[9] H.Pagnia, N.Sotnik: Phys. Stat. Sol.108 (1988) 11.10.1002/pssa.2211080102Search in Google Scholar

[10] H.J.Hovel: Appl. Phys. Lett.17 (1970) 141.10.1063/1.1653340Search in Google Scholar

[11] A.Asamitsu, Y.Tomioka, H.Kuwahara, Y.Tokura: Nature388 (1997) 50.10.1038/40363Search in Google Scholar

[12] M.N.Kozicki, M.Yun, L.Hilt, A.Singh: Pennington, NJ, USA: Electrochem. Soc (1999) 298.Search in Google Scholar

[13] A.Beck, J.G.Bednorz, C.Gerber, C.Rossel, D.Widmer: Appl. Phys. Lett.77 (2000) 139.10.1063/1.126902Search in Google Scholar

[14] M.Chen, K.A.Rubin, R.W.Barton: Appl. Phys. Lett.49 (1986) 502.10.1063/1.97617Search in Google Scholar

[15] S.Yagi, S.Fujimori, H.Yamazaki: Jpn. J. Appl. Phys.26 (1987) 51.10.1143/JJAP.26.L935Search in Google Scholar

[16] N.Yamada, E.Ohno, N.Akahira, K.Nishiuchi, K.Nagata: Jpn. J. Appl. Phys.26 (1987) 61.10.1143/JJAP.26.1811Search in Google Scholar

[17] D.B.Strukov, G.S.Snider, D.R.Stewart, R.S.Williams: Nature453 (2008) 80. 18451858; 10.1038/nature06932Search in Google Scholar PubMed

[18] L.O.Chua: IEEE Trans. Circuit TheoryCT-18 (1971) 507.10.1109/TCT.1971.1083337Search in Google Scholar

[19] L.O.Chua, S.M.Kang: Proc. IEEE64 (1976) 209.10.1109/PROC.1976.10092Search in Google Scholar

[20] I.Friedrich, V.Weidenhof, W.Njoroge, P.Franz, M.Wuttig: J. Appl. Phys.87 (2000) 4130.10.1063/1.373041Search in Google Scholar

[21] S.Lai, T.Lowrey: Piscataway, NJ, USA: IEEE (2001) 36.5.1.Search in Google Scholar

[22] M.Kastner, D.Adler, H.Fritzsche: Phys. Rev. Lett.37 (1976) 1504.10.1103/PhysRevLett.37.1504Search in Google Scholar

[23] D.Ielmini, Y.Zhang: J. Appl. Phys.102 (2007) 054517.10.1063/1.2773688Search in Google Scholar

[24] D.Ielmini, Y.Zhang: Appl. Phys. Lett.90 (2007) 192102.10.1063/1.2737137Search in Google Scholar

[25] M.Wuttig, D.Lusebrink, D.Wamwangi, W.Welnic, M.Gillessen, R.Dronskowski: Nat. Mater.6 (2007) 122. 17173032; 10.1038/nmat1807Search in Google Scholar

[26] J.J.O'Dwyer: The Theory of Electrical Conduction and Breakdown in Solid Dielectrics, 1973.Search in Google Scholar

[27] C.M.Osburn, R.W.Vest: J. Phys. Chem. Solids32 (1971) 1331.10.1016/S0022-3697(71)80191-9Search in Google Scholar

[28] S.H.Chang, S.C.Chae, S.B.Lee, C.Liu, T.W.Noh, J.S.Lee, B.Kahng, J.H.Jang, M.Y.Kim, D.-W.Kim, C.U.Jung: Appl. Phys. Lett. (2008) 183507.10.1063/1.2924304Search in Google Scholar

[29] C.Park, S.H.Jeon, S.C.Chae, S.Han, B.H.Park, S.Seo, D.-W.Kim: Appl. Phys. Lett.93 (2008).10.1063/1.2963983Search in Google Scholar

[30] J.G.Simmons, R.R.Verderber: Proc. Roy. Soc. A301 (1967) 77.10.1098/rspa.1967.0191Search in Google Scholar

[31] A.Sawa, T.Fujii, M.Kawasaki, Y.Tokura: Appl. Phys. Lett.88 (2006) 232112.10.1063/1.2211147Search in Google Scholar

[32] K.Campbell: IEEE Proceedings (2006).Search in Google Scholar

[33] R.Waser, T.Baiatu, K.H.Hardtl: J. Am. Cer. Soc.73 (1990) 1654.10.1111/j.1151-2916.1990.tb09810.xSearch in Google Scholar

[34] K.Szot, W.Speier, R.Carius, U.Zastrow, W.Beyer: Phys. Rev. Lett.88 (2002) 075508/1.10.1103/PhysRevLett.88.075508Search in Google Scholar PubMed

[35] K.Szot, W.Speier, G.Bihlmayer, R.Waser: Nat. Mater.5 (2006) 312. 16565712; 10.1038/nmat1614Search in Google Scholar PubMed

[36] R.Waser, R.Dittmann, G.Staikov, K.Szot: Adv. Mater.21 (2009) 2632.10.1002/adma.200900375Search in Google Scholar

[37] K.Szot, R.Dittmann, W.Speier, R.Waser: Phys. Stat. Sol. (RRL)1 (2007) R86.10.1002/pssr.200701003Search in Google Scholar

[38] R.Muenstermann, R.Dittmann, K.Szot, S.Mi, C.-L.Jia, P.Meuffels, R.Waser: APL93 (2008) 023110.Search in Google Scholar

[39] T.Menke, P.Meuffels, R.Dittmann, K.Szot, R.Waser: J. Appl. Phys.105 (2009) 066104.10.1063/1.3100209Search in Google Scholar

[40] K.Shibuya, R.Dittmann, S.Mi, R.Waser: Adv. Mat.22 (2010) 411414.10.1002/adma.200901493Search in Google Scholar PubMed

[41] K.Shportko, S.Kremers, M.Woda, D.Lencer, J.Robertson, M.Wuttig: Nat. Mater.7 (2008) 653. 18622406; 10.1038/nmat2226Search in Google Scholar PubMed

[42] L.Pauling: The Nature of the Chemical Bond, 1939.Search in Google Scholar

[43] P.B.Littlewood: J. Phys.13 (1980) 4855.10.1088/0022-3719/13/26/009Search in Google Scholar

[44] P.B.Littlewood: J. Phys.13 (1980) 4875.10.1088/0022-3719/13/26/010Search in Google Scholar

[45] T.Matsunaga, N.Yamada: Phys. Rev. B69 (2004) 104111.10.1103/PhysRevB.69.104111Search in Google Scholar

[46] D.Lencer, M.Salinga, B.Grabowski, T.Hickel, J.Neugebauer, M.Wuttig: Nat. Mater.7 (2008) 972. 19011618; 10.1038/nmat2330Search in Google Scholar PubMed

[47] L.Nagarajan, R.A.De Souza, D.Samuelis, I.Valov, A.Borger, J.Janek, K.D.Becker, P.C.Schmidt, M.Martin: Nat. Mater.7 (2008) 391. 18391957; 10.1038/nmat2164Search in Google Scholar PubMed

[48] S.Piskunov, E.Heifets, R.I.Eglitis, G.Borstel: Computational Materials Science29 (2004) 165.10.1016/j.commatsci.2003.08.036Search in Google Scholar

[49] W.W.Zhuang, W.Pan, B.D.Ulrich, J.J.Lee, L.Stecker, A.Burmaster, D.R.Evans, S.T.Hsu, M.Tajiri, A.Shimaoka, K.Inoue, T.Naka, N.Awaya, A.Sakiyama, Y.Wang, S.Q.Liu, N.J.Wu, A.Ignatiev: (2002) 193.Search in Google Scholar

[50] A.Sawa, T.Fujii, M.Kawasaki, Y.Tokura: Appl. Phys. Lett.86 (2005) 112508.10.1063/1.1883336Search in Google Scholar

[51] A.Sawa: Mater. Today11 (2008) 28.10.1016/S1369-7021(08)70119-6Search in Google Scholar

[52] W.Luo, W.Duan, S.G.Louie, M.L.Cohen: Phys. Rev. B70 (2004) 214109.10.1103/PhysRevB.70.214109Search in Google Scholar

[53] R.Waser: Solid State Ionics, Diffusion & Reactions, Netherlands75 (1995) 89.10.1016/0167-2738(94)00152-ISearch in Google Scholar

[54] R.Hagenbeck, R.Waser: J. Appl. Phys.83 (1998) 2083.10.1063/1.366941Search in Google Scholar

[55] Z.Zhang, W.Sigle, M.Ruhle: Physical Review B (Condensed Matter and Materials Physics)66 (2002) 94108.10.1103/PhysRevB.66.094108Search in Google Scholar

[56] T.Baiatu, R.Waser, K.H.Hardtl: J. Am. Cer. Soc.73 (1990) 1663.10.1111/j.1151-2916.1990.tb09811.xSearch in Google Scholar

[57] R.Waser: (1990).Search in Google Scholar

[58] R.Merkle, J.Maier: Angew. Chem. Int. Ed. (2008).19257786Search in Google Scholar

[59] T.Leisegang, H.Stoecker, A.A.Levin, T.Weissbach, M.Zschornak, E.Gutmann, K.Rickers, S.Gemming, D.C.Meyer: PRL102 (2009) 087601.10.1103/PhysRevLett.102.087601Search in Google Scholar PubMed

[60] N.Shanthi, D.D.Sarma: Phys. Rev. B57 (1998) 2153.10.1103/PhysRevB.57.2153Search in Google Scholar

[61] D.Turnbull: Contemporary Physics10 (1969) 473.10.1080/00107516908204405Search in Google Scholar

[62] J.A.Kalb, M.Wuttig, F.Spaepen: J. Mater. Res.22 (2007) 748.10.1557/jmr.2007.0103Search in Google Scholar

[63] J.A.Kalb, F.Spaepen, M.Wuttig: J. Appl. Phys.98 (2005) 54910.10.1063/1.2037870Search in Google Scholar

[64] I.Friedrich, V.Weidenhof, S.Lenk, M.Wuttig: Thin Solid Films389 (2001) 239.10.1016/S0040-6090(01)00891-4Search in Google Scholar

[65] Y.C.Chen, C.T.Rettner, S.Raoux, G.W.Burr, S.H.Chen, R.M.Shelby, M.Salinga, W.P.Risk, T.D.Happ, G.M.McClelland, M.Breitwisch, A.Schrott, J.B.Philipp, M.H.Lee, R.Cheek, T.Nirschl, M.Lamorey, C.F.Chen, E.Joseph, S.Zaidi, B.Yee, H.L.Lung, R.Bergmann, C.Lam: IEDM Tech. Dig. (2006) 777.Search in Google Scholar

[66] I.Friedrich, V.Weidenhof, W.Njoroge, P.Franz, M.Wuttig: J. Appl. Phys.87 (2000) 4130.10.1063/1.373041Search in Google Scholar

[67] J.K.Olson, HengLi, T.Ju, J.M.Viner, P.C.Taylor: J. Appl. Phys.99 (2006) 103508.10.1063/1.2194327Search in Google Scholar

[68] G.D.Watkins: Festkorper Probleme XXIV. Advances in Solid State Physics. Plenary Lectures of the 48th Annual Meeting of the German Physical Society. Vieweg. 1984 (1984) 163.Search in Google Scholar

[69] A.Ignatiev, N.J.Wu, X.Chen, S.Q.Liu, C.Papagianni, J.Strozier: Phys. Stat. Sol.243 (2006) 2089.10.1002/pssb.200666805Search in Google Scholar

[70] R.Waser: IEEE Tech. Dig. (2008).Search in Google Scholar

[71] Y.B.Nian, J.Strozier, N.J.Wu, X.Chen, A.Ignatiev: Phys. Rev. Lett.98 (2007) 146403/1.10.1103/PhysRevLett.98.146403Search in Google Scholar PubMed

[72] SangHo Jeon, BaeHo Park, J.Lee, B.Lee, SeungwuHan: Appl. Phys. Lett.89 (2006) 42904.10.1063/1.2234840Search in Google Scholar

[73] R.Meyer, L.Schloss, J.Brewer, R.Lambertson, W.Kinney, J.Sanchez, D.Rinerson: Proc. NVMTS (2008).Search in Google Scholar

[74] A.Odagawa, Y.Katoh, Y.Kanzawa, Z.Wei, T.Mikawa, S.Muraoka, T.Tagaki: Appl. Phys. Lett.91 (2007) 133503.10.1063/1.2789178Search in Google Scholar

[75] G.Schoenhense, H.J.Elmers, S.A.Nepijko, C.M.Schneider: Adv. Imag. Electron Phys.142 (2006) 159.10.1016/S1076-5670(05)42003-0Search in Google Scholar

[76] Z.Wei, Y.Kanzawa, K.Arita, Y.Katoh, K.Kawai, S.Muraoka, S.Mitani, S.Fujii, K.Katayama, M.Iijima, T.Mikawa, T.Ninomiya, R.Miyanaga, Y.Kawashima, K.Tsuji, A.Himeno, T.Okada, R.Azuma, K.Shimakawa, H.Sugaya, T.Takagi, R.Yasuhara, H.Horiba, H.Kumigashira, M.Oshima: IEEE Tech. Dig. (2008).Search in Google Scholar

[77] C.Yoshida, K.Kinoshita, T.Yamasaki, Y.Sugiyama: APL93 (2008) 042106.Search in Google Scholar

[78] P.G.Wahlbeck, P.W.Gilles: J. Am. Cer. Soc.49 (1966) 180.10.1111/j.1151-2916.1966.tb13229.xSearch in Google Scholar

[79] K.Szot, M.Pawelczyk, J.Herion, C.Freiburg, J.Albers, R.Waser, J.Hulliger, J.Kwapulinski, J.Dec: Appl. Phys. A62 (1996) 335.Search in Google Scholar

[80] R.Yasuhara, K.Fujiwara, K.Horiba, M.Kotsugi, F.Guo, H.Kumigashira, M.Oshima, H.Tagaki: WOE15 (2008) (Poster).Search in Google Scholar

[81] S.Raoux, G.W.Burr, M.J.Breitwisch, C.T.Rettner, Y.C.Chen, R.M.Shelby, M.Salinga, D.Krebs, S.-H.Chen, H.-L.Lung, C.H.Lam: IBM Journal of Research and Development52 (2008).10.1147/rd.524.0465Search in Google Scholar

[82] Gyeong-SuParka, Xiang-ShuLi, Dong-ChirlKim, Ran-JuJung, Myoung-JaeLee, SunaeSeo: Appl. Phys. Lett.91 (2007).17972937Search in Google Scholar

[83] M.Wuttig, N.Yamada: Nat. Materials6 (2007) 824.10.1038/nmat2009Search in Google Scholar PubMed

[84] H.Schmalzried, A.Navrotsky: Verlag Chemie (2004) 122.Search in Google Scholar

Received: 2009-9-1
Accepted: 2009-12-20
Published Online: 2013-05-15
Published in Print: 2010-02-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Materials for Information Technology
  5. Feature
  6. Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
  7. Spintronics in metallic superconductor/ferromagnet hybrid structures
  8. Graphene metrology and devices
  9. The role of defects in resistively switching chalcogenides
  10. Materials in optical data storage
  11. Scaling effects on microstructure and reliability for Cu interconnects
  12. Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
  13. Printing materials for electronic devices
  14. Basic
  15. Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
  16. Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
  17. Capillary equilibrium in a semi-solid Al – Cu slurry
  18. A comparative study of room-temperature creep in lead-free tin-based solder alloys
  19. Modeling creep in a thick composite cylinder subjected to internal and external pressures
  20. Applied
  21. The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
  22. Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
  23. Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
  24. Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
  25. Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
  26. DGM News
  27. DGM News
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110276/pdf
Scroll to top button