Home Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
Article
Licensed
Unlicensed Requires Authentication

Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties

  • Irina P. Semenova , Evgeniya B. Yakushina , Veronika V. Nurgaleeva and Ruslan Z. Valiev
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

This work is related to the enhancement of the fatigue properties in ultrafine-grained Ti alloys produced by severe plastic deformation techniques. To process commercially pure Ti Grade 4 and Ti-6Al-4V alloys, combined severe plastic deformation techniques that include equal channel angular pressing and additional thermal and deformation treatments were used. As a result we could produce ultrafine-grained Ti materials with a similar grain size of less than 300–400 nm but different in their shape and grain boundary structure (both low- and high-angle, equilibrium and non-equilibrium grain boundaries). It is shown that tailoring grain boundaries by severe plastic deformation techniques makes it possible to considerably enhance the strength of Ti materials while preserving high ductility. In turn, ultrafine-grained materials with enhanced strength and ductility demonstrate superior fatigue endurance and life.


* Dr. Irina Semenova, Institute of Physics of Advanced Materials Ufa State Aviation Technical University12 K. Marx str., Ufa 450000, Russian Federation Tel./Fax: +7 347 273 3422 E-mail:

References

[1] S.R.Agnew, J.R.Weetman: Mater. Sci. Eng. A244 (1998) 145153.10.1016/S0921-5093(97)00689-8Search in Google Scholar

[2] A.Vinogradov, S.Hashimoto: Mater. Trans.42 (2001) 7484.10.2320/matertrans.42.74Search in Google Scholar

[3] A.Yu.Vinogradov, V.V.Stolyarov, S.Hashimoto, R.Z.Valiev: Mater. Sci. Eng. A318 (2001) 163173.10.1016/S0921-5093(01)01262-XSearch in Google Scholar

[4] H.Mughrabi, H.W.Höppel, M.Kautz: Scripta Mater.51 (2004) 807812.10.1016/j.scriptamat.2004.05.012Search in Google Scholar

[5] H.W.HöppelM.Kautz, C.Xu, M.Murashkin, T.G.Langdon, R.Z.Valiev, H.Mughrabi: Int. J. Fatigue28 (2006) 10011010.10.1016/j.ijfatigue.2005.08.014Search in Google Scholar

[6] E.Ma: JOM (2006) 4953.10.1007/s11837-006-0215-5Search in Google Scholar

[7] Y.H.Zhao, J.F.Bingert, Y.T.Zhu, X.Z.Liao, R.Z.Valiev, Z.Horita, T.G.Langdon, Y.Z.Zhou, E.J.Lavernia: Appl. Phys. Lett.92 (2008) 1903.Search in Google Scholar

[8] M.Furukawa, Z.Horita, T.G.Langdon: J. Mater. Sci.40 (2005) 909.10.1007/s10853-005-6509-0Search in Google Scholar

[9] X.Zhang, H.Wang, R.O.Scattergood, J.Narayan, C.C.Koch, A.V.Sergueeva, A.K.Mukherjee: Acta Mater.50 (2002) 48234830.10.1016/S1359-6454(02)00349-XSearch in Google Scholar

[10] C.C.Koch: Scripta Mater.49 (2003) 657662.10.1016/S1359-6462(03)00394-4Search in Google Scholar

[11] R.Z.Valiev: Nature Materials3 (2004) 511516. PMid:15286754;10.1038/nmat1180Search in Google Scholar PubMed

[12] R.Z.Valiev, I.V.Alexandrov, Y.T.Zhu, T.C.Lowe: J. Mater. Res.17 (2002) 58.10.1557/JMR.2002.0002Search in Google Scholar

[13] R.Z.Valiev: Mater. Sci. Forum, 584–586 (2008) 2228.10.4028/www.scientific.net/MSF.584-586.22Search in Google Scholar

[14] I.P.Semenova, G.Kh.Salimgareeva, V.V.Latysh, T.Lowe, R.Z.Valiev: Mater. Sci. Eng. A503 (2009) 9295.10.1016/j.msea.2008.07.075Search in Google Scholar

[15] I.P.Semenova, R.Z.Valiev, E.B.Yakushina, G.H.Salimgareeva, T.C.Lowe: J. Mater. Sci.43 (2008) 73547359.10.1007/s,10853-008-2984-4Search in Google Scholar

[16] V.V.Stolyarov, Y.T.Zhu, G.I.Raab, A.I.Zharikov, R.Z.Valiev: Mater. Sci. Eng. A385 (2004) 309313.10.1016/S0921-5093(04)00881-0Search in Google Scholar

[17] R.Z.Valiev, R.K.Islamgaliev, I.P.Semenova: Mater. Sci. Eng. A463 (2007) 27.10.1016/j.msea.2006.08.121Search in Google Scholar

[18] I.P.Semenova, L.R.Saitova, G.I.Raab, A.I.Korshunov, Y.T.Zhu, T.C.Lowe, R.Z.Valiev: Mater. Sci. Forum503–504 (2006) 757762.10.4028/www.scientific.net/MSF.503-504.757Search in Google Scholar

[19] R.Z.Valiev, F.Chmelik, F.Bordeaux, G.Kapelski, B.Baudelet: Scripta Metall. Mater.27 (1992) 855860.10.1016/0956-716X(92)90405-4Search in Google Scholar

[20] J.Languillaume, F.Chmelik, G.Kapelski, F.Bordeaux, A.A.Nazarov, G.Canova, C.Esling, R.Z.Valiev, B.Baudelet: Acta Metall. Mater.41 (1993) 29532962.10.1016/0956-7151(93)90110-ESearch in Google Scholar

[21] A.A.Popov, I. Yu.Pyshmintsev, S.L.Demakov, A.G.Illarionov, T.C.Lowe, A.V.Sergeyeva, R.Z.Valiev: Scripta Mater.37 (1997) 10891094.10.1016/S1359-6462(97)00210-8Search in Google Scholar

[22] R.Z.Valiev, A.V.Sergueeva, A.K.Mukherjee: Scripta Mater.49 (2003) 669674.10.1016/S1359-6462(03)00395-6Search in Google Scholar

[23] H.J.Rack, J.Qazi, L.Allard, R.Valiev: Mat. Sci. Forum584–586 (2008) 893898.10.4028/www.scientific.net/MSF.584-586.893Search in Google Scholar

[24] U.Zwicker: Titan und Titanlegierungen, Springer, Berlin (1974).10.1007/978-3-642-80587-5Search in Google Scholar

[25] R.Z.Valiev, M. Yu.Murashkin, E.V.Bobruk, G.I.Raab: Mater. Trans. 150 (2009) 8791.10.2320/matertrans.MD200821Search in Google Scholar

[26] G.Nurislamova, X.Sauvage, M.Murashkin, R.Islamgaliev, R.Valiev: Phil. Mag. Lett.88 (2008) 459466.10.1080/09500830802186938Search in Google Scholar

[27] S.Zherebtsov, G.Salishchev, R.Galeyev, K.Maekawa: Mat. Trans.46 (2005) 20202025.10.2320/matertrans.46.2020Search in Google Scholar

[28] L.R.Saitova, H.W.Höppel, M.Göken, I.P.Semenova, R.Z.Valiev: Int. J. Fatig.31 (2009) 322331.10.1016/j.ijfatigue.2008.08.007Search in Google Scholar

Received: 2009-4-18
Accepted: 2009-9-3
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110234/pdf?lang=en
Scroll to top button