Ductility of ultrafine-grained copper processed by equal-channel angular pressing
-
Yonghao Zhao
Abstract
In a previous study (R.Z. Valiev et al.: J. Mater. Res. 17 (2002) 5), unusual combinations of yield strength and ductility in ultrafine grained copper processed by equal-channel angular pressing of 360 MPa 23 % (by Bc route two passes) and 380 MPa 55 % (by Bc route 16 passes) were reported. However, results from recent work suggest that the tensile strain, when measured using a non-standard method and miniature dog-bone tensile specimens, is likely to contain significant errors. In this study, by implementing a standard strain measurement and tensile specimens with geometries that meet the ASTM requirements, we report yield strength and ductility combinations of 370 MPa 9 % (Bc 2 passes) and 370 MPa 16 % (Bc 16 passes) in the ultrafine grained copper. The higher ductility of the ultrafine grained copper processed by route Bc 16 passes was rationalized on the basis of several factors including the presence of equiaxed grains, lower dislocation density and higher fraction of high-angle grain boundaries (which result in larger strain rate sensitivity and strain hardening).
References
[1] H.Gleiter, in: N. Hansen, A. Horsewell, T. Leffers, H. Lilholt (Eds.), Proceedings of the second Ris International Symposium on Metallurgy and Materials Science, Risϕ National Laboratory Roskilde, Denmark (1981) 5.Search in Google Scholar
[2] M.A.Meyers, A.Mishra, D.J.Benson: Prog. Mater. Sci.51 (2006) 427.10.1016/j.pmatsci.2005.08.003Search in Google Scholar
[3] J.R.Weertman, in: C.C.Koch (Ed.), Nanostructured Materials: Processing, Properties and Applications, 2nd Ed., William Andrews Publishing, Norwich, New York (2007) 537.10.1016/B978-081551534-0.50014-2Search in Google Scholar
[4] C.C.Koch, D.G.Morris, K.Lu, A.Inoue: MRS Bull.24 (1999) 54.Search in Google Scholar
[5] C.C.Koch: Scripta Mater.49 (2003) 657.10.1016/S1359-6462(03)00394-4Search in Google Scholar
[6] E.Ma: Scripta Mater.49 (2003) 663.10.1016/S1359-6462(03)00396-8Search in Google Scholar
[7] C.C.Koch, K.M.Youssef, R.O.Scattergood, K.L.Murty: Adv. Eng. Mater.7 (2005) 787, references therein.10.1002/adem.200500094Search in Google Scholar
[8] E.Ma: JOM58 (4) (2006) 49, references therein.10.1007/s11837-006-0215-5Search in Google Scholar
[9] R.Z.Valiev, I.V.Alexandrov, Y.T.Zhu, T.C.Lowe: J. Mater. Res.17 (2002) 5.10.1557/JMR.2002.0002Search in Google Scholar
[10] Y.M.Wang, M.W.Chen, F.H.Zhou, E.Ma: Nature419 (2002) 912. PMid:12410306;10.1038/nature01133Search in Google Scholar PubMed
[11] ASTM E 8M-04: http://www.astm.orgSearch in Google Scholar
[12] Y.H.Zhao, Y.Z.Guo, Q.Wei, A.M.Dangelewicz, C.Xu, Y.T.Zhu, T.G.Langdon, Y.Z.Zhou and E.J.Lavernia: Scripta Mater.59 (2008) 627.10.1016/j.scriptamat.2008.05.031Search in Google Scholar
[13] Y.H.Zhao, Y.Z.Guo, Q.Wei, T.D.Topping, A.M.Dangelewicz, Y.T.Zhu, T.G.Langdon, E.J.Lavernia: Mater. Sci. Eng. A525 (2009) 68.10.1016/j.msea.2009.06.031Search in Google Scholar
[14] Y.Iwahashi, Y.Wang, Z.Horita, M.Nemoto, T.G.Langdon: Scripta Mater.35 (1996) 143.10.1016/1359-6462(96)00107-8Search in Google Scholar
[15] L.H.Qian, S.C.Wang, Y.H.Zhao, K.Lu: Acta Mater.50 (2002) 3425.10.1016/S1359-6454(02)00155-6Search in Google Scholar
[16] Y.H.Zhao, K.Lu, K.Zhang: Phys. Rev. B66 (2002) 085404.10.1103/PhysRevB.66.085404Search in Google Scholar
[17] S.V.Dobatkin, J.A.Szpunar, A.P.Zhilyaev, J.-Y.Cho, A.A.Kuznetsov, Mater. Sci. Eng. A462 (2007) 132.10.1016/j.msea.2006.04.156Search in Google Scholar
[18] D.A.Hughes, N.Hansen: Acta Mater.48 (2000) 2985.10.1016/S1359-6454(00)00082-3Search in Google Scholar
[19] J.Y.Huang, Y.T.Zhu, H.Jiang, T.C.Lowe: Acta Mater.49 (2001) 1497.10.1016/S1359-6454(01)00069-6Search in Google Scholar
[20] R.Z.Valiev, R.K.Isamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar
[21] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881.10.1016/j.pmatsci.2006.02.003Search in Google Scholar
[22] Y.H.Zhao, H.W.Sheng, K.Lu: Acta Mater.49 (2001) 365.10.1016/S1359-6454(00)00310-4Search in Google Scholar
[23] F. DallaTorre, R.Lapovok, J.Sandlin, P.F.Thomson, C.H.J.Davies, E.V.Pereloma: Acta Mater.52 (2004) 4819.10.1016/j.actamat.2004.06.040Search in Google Scholar
[24] Z.F.Zhang, J.Eckert: Phys. Rev. Lett.94 (2005) 094301. PMid:15783967;10.1103/PhysRevLett.94.094301Search in Google Scholar
[25] M.A.Meyer, K.K.Chawla: Mechanical Metallurgy, Englewood Cliffs (NJ), Prentice-Hall (1984) 570 and 585.Search in Google Scholar
[26] E.W.Hart: Acta Metall.15 (1967) 351.10.1016/0001-6160(67)90211-8Search in Google Scholar
[27] Y.M.Wang, E.Ma: Acta Mater.52 (2004) 1699.10.1016/j.actamat.2003.12.022Search in Google Scholar
[28] Q.Wei: J. Mater. Sci.42 (2007) 1709.10.1007/s10853-006-0700-9Search in Google Scholar
[29] Q.Wei, S.Cheng, K.T.Ramesh, E.Ma: Mater. Sci. Eng. A381 (2004) 71.10.1016/j.msea.2004.03.064Search in Google Scholar
[30] R.J.Asaro, S.Suresh: Acta Mater.53 (2005) 3369.10.1016/j.actamat.2005.03.047Search in Google Scholar
[31] I.H.Lin, J.P.Hirth, E.W.Hart: Acta Metall. Mater.29 (1981) 819.10.1016/0001-6160(81)90124-3Search in Google Scholar
[32] Y.H.Zhao, J.F.Bingert, X.Z.Liao, B.Z.Cui, K.Han, A.Serhueeva, A.K.Muhkerjee, R.Z.Valiev, T.G.Langdon, Y.T.Zhu: Adv. Mater.18 (2006) 2949.10.1002/adma.200601472Search in Google Scholar
[33] Y.H.Zhao, J.F.Bingert, Y.T.Zhu, X.Z.Liao, R.Z.Valiev, Z.Horita, T.G.Langdon, Y.Z.Zhou, E.J.Lavernia: Appl. Phys. Lett.92 (2008) 081903.10.1063/1.2870014Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Review of IJMR's centenary year
- Proceedings of the SPD Workshop, Melbourne, June 2009
- Feature
- Processing by severe plastic deformation:an ancient skill adapted for the modern world
- Review
- Grain refinement and growth induced by severe plastic deformation
- Basic
- The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
- Ductility of ultrafine-grained copper processed by equal-channel angular pressing
- Technical parameters affecting grain refinement by high pressure torsion
- Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
- Softening of high purity aluminum and copper processed by high pressure torsion
- An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
- Deformation mechanisms in an ultra-fine grained Al alloy
- Applied
- The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
- Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
- Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
- The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
- Plastic deformation analysis of accumulative back extrusion
- The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
- Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
- Mg alloy for hydrogen storage processed by SPD
- DGM News
- Personal/Conferences/Imprint
Articles in the same Issue
- Contents
- Contents
- Editorial
- Review of IJMR's centenary year
- Proceedings of the SPD Workshop, Melbourne, June 2009
- Feature
- Processing by severe plastic deformation:an ancient skill adapted for the modern world
- Review
- Grain refinement and growth induced by severe plastic deformation
- Basic
- The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
- Ductility of ultrafine-grained copper processed by equal-channel angular pressing
- Technical parameters affecting grain refinement by high pressure torsion
- Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
- Softening of high purity aluminum and copper processed by high pressure torsion
- An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
- Deformation mechanisms in an ultra-fine grained Al alloy
- Applied
- The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
- Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
- Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
- The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
- Plastic deformation analysis of accumulative back extrusion
- The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
- Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
- Mg alloy for hydrogen storage processed by SPD
- DGM News
- Personal/Conferences/Imprint