Home An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
Article
Licensed
Unlicensed Requires Authentication

An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing

  • Gang Sha , Simon P. Ringer , Zhi Chao Duan and Terence G. Langdon
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The segregation of solute elements at the grain boundaries of an Al–Zn–Mg–Cu alloy processed by equal-channel angular pressing was characterised using three-dimensional atom probe tomography. The results show that Mg and Cu segregate strongly to the grain boundaries but Zn shows no clear segregation and even becomes depleted near the boundaries. Trace elements such as Zr, Cr, Si and Mn show no clear segregation at the grain boundaries. An increase in the number of passes leads to a decrease in the grain size but there is no clear effect on the levels of solute segregation at the boundaries. The significant segregation of certain major alloying element at the boundaries of ultrafine-grained alloys implies that the less super-saturation solutes in the matrix will be available for precipitation with a decrease in the average grain size.


* Correspondence address Dr. Gang Sha, Australian Key Centre for Microscopy & Microanalysis The University of Sydney, NSW, 2006, Australia. Tel.: +0061 02 9036 9050, Fax: + 0061 02 9351 7682, E-mail:

References

[1] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar

[2] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881.10.1016/j.pmatsci.2006.02.003Search in Google Scholar

[3] A.P.Zhilyaev, T.G.Langdon: Prog. Mater. Sci.53 (2008) 893.10.1016/j.pmatsci.2008.03.002Search in Google Scholar

[4] M.Murayama, Z.Horita, K.Hono: Acta Mater.49 (2001) 21.10.1016/S1359-6454(00)00308-6Search in Google Scholar

[5] Y.H.Zhao, X.Z.Liao, Z.Jin, R.Z.Valiev, Y.T.Zhu: Acta Mater.52 (2004) 4589.10.1016/j.actamat.2004.06.017Search in Google Scholar

[6] C.Xu, M.Furukawa, Z.Horita, T.G.Langdon: Acta Mater.53 (2005) 749.10.1016/j.actamat.2004.10.026Search in Google Scholar

[7] G.Sha, Y.B.Wang, X.Z.Liao, Z.C.Duan, S.P.Ringer, T.G.Langdon: Acta Mater.57 (2009) 3123.10.1016/j.actamat.2009.03.017Search in Google Scholar

[8] J.Wang, Y.Iwahashi, Z.Horita, M.Furukawa, M.Nemoto, R.Z.Valiev, T.G.Langdon: Acta Mater.44 (1996) 2973.10.1016/1359-6454(95)00395-9Search in Google Scholar

[9] V.V.Stolyarov, V.V.Latysh, V.A.Shundalov, D.A.Salimonenko, R.K.Islamgaliev, R.Z.Valiev: Mater. Sci. Eng. A234–236 (1997) 339.10.1016/S0921-5093(97)00210-4Search in Google Scholar

[10] Y.Iwahashi, Z.Horita, M.Nemoto, T.G.Langdon: Acta Mater.45 (1997) 4733.10.1016/S1359-6454(97)00100-6Search in Google Scholar

[11] Y.Iwahashi, Z.Horita, M.Nemoto, T.G.Langdon: Acta Mater.46 (1998) 3317.10.1016/S1359-6454(97)00494-1Search in Google Scholar

[12] Y.H.Zhao, X.Z.Liao, S.Cheng, E.Ma, Y.T.Zhu: Adv. Mater.18 (2006) 2280.10.1002/adma.200600310Search in Google Scholar

[13] S.D.Terhune, D.L.Swisher, K.Oh-ishi, Z.Horita, T.G.Langdon, T.R.McNelley: Metall. Mater. Trans. A33 (2002) 2173.10.1007/s11661-002-0049-xSearch in Google Scholar

[14] O.V.Mishin, D. JuulJensen, N.Hansen: Mater Sci. Eng. A342 (2003) 320.10.1016/S0921-5093(02)00311-8Search in Google Scholar

[15] A.A.Salem, T.G.Langdon, T.R.McNelley, S.R.Kalidindi, S.L.Semiatin: Metall. Mater. Trans. A37 (2006) 2879.10.1007/BF02586120Search in Google Scholar

[16] B.W.Krakauer, D.N.Seidman: Phys. Rev. B48 (1993) 6724.10.1103/PhysRevB.48.6724Search in Google Scholar

[17] B.W.Krakauer, D.N.Seidman: Acta Mater.46 (1998) 6145.10.1016/S1359-6454(98)00262-6Search in Google Scholar

[18] M.KMillerA.Cerezo, M.G.Hetherlington, G.D.W.Smith: Atom probe field ion microscopy, Oxford Science, Oxford (1996).Search in Google Scholar

[19] A.Cerezo, P.H.Clifton, S.Lozano-Perez, P.Panayi, G.Sha, G.D.W.Smith: Microsc. Microanal.13 (2007) 408.Search in Google Scholar

[20] D.Blavette, E.Cadel, C.Pereige, B.Deconihout, P.Caron: Microsc. Microanal.13 (2007) 464.10.1017/S143192760707078XSearch in Google Scholar PubMed

[21] T.F.Kelly, T.T.Gribb, J.D.Martens, R.L.Shepard, J.D.Wiener, S.A.Kunicki, R.M.Ulfig, D.R.Lenz, E.M.Strennen, E.Oltman, J.H.Bunton, D.R.Strait: Microsc. Microanal.10 (2004) 373.10.1017/S1431927604040565Search in Google Scholar PubMed

[22] G.Sha, S.P.Ringer: Ultramicroscopy109 (2009) 580.10.1016/j.ultramic.2008.10.012Search in Google Scholar PubMed

[23] A.Cerezo, P.H.Clifton, A.Gomberg, G.D.W.Smith: Ultramicroscopy107 (2007) 720.10.1016/j.ultramic.2007.02.025Search in Google Scholar

[24] P.Doig, J.W.Edington: Phil. Mag.28 (1973) 961.10.1080/14786437308220958Search in Google Scholar

[25] A.W.Nicholls, I.P.Jones: J. Phys. Chem. Solids44 (1983) 671.10.1016/0022-3697(83)90115-4Search in Google Scholar

[26] D.L.Beke, I.Goedeny, G.Erdelyi, F.J.Kedves: Phil. Mag. A56 (1987) 659.10.1080/01418618708204479Search in Google Scholar

[27] T.Fujita, Z.Horita, T.G.Langdon: Mater. Sci. Eng A371 (2004) 241.10.1016/j.msea.2003.12.042Search in Google Scholar

Received: 2009-3-31
Accepted: 2009-8-21
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110227/pdf?lang=en
Scroll to top button