Home Mg alloy for hydrogen storage processed by SPD
Article
Licensed
Unlicensed Requires Authentication

Mg alloy for hydrogen storage processed by SPD

  • Daniel R. Leiva , Daniel Fruchart , Maria Bacia , Grégory Girard , Natalya Skryabina , André C.S. Villela , Salvatore Miraglia , Dilson S. Santos and Walter J. Botta
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Mg-based nanocomposites are promising candidates for hydrogen storage applications exhibiting fast H-sorption kinetics at reasonably low temperatures when processed by high-energy ball milling techniques. However, since compaction of the highly reactive nanometric powder is desirable before application, the search for other effective processing routes for the preparation of Mg-based nanocomposites is relevant. In this work, we have used a combination of equal channel angular pressing, cold rolling and high-energy ball milling in the processing of the commercial AZ31 extruded alloy to evaluate its use as a hydrogen storage material. Severe plastic deformation carried out at different temperatures, combined with further mechanical processing resulted in a controlled texture and signifiant grain refinement, which are desirable microstructural characteristics for hydrogen storage applications.


* Prof. Walter José Botta, Lab Nano – Departamento de Engenharia de Materiais, Universidade Federal de São Carlos rod. Washington Luiz, km 235, 13.565-905 São Carlos – SP. Tel.: + 55 16 33 51 85 53, Fax: +55 16 33 61 54 04, E-mail:

References

[1] B.Sakintuna, F.Lamari-Darkrim, M.Hirscher: Int. J. Hydrogen Energy32 (2007) 1121. DOI:10.1016/j.ijhydene.2006.11.02210.1016/j.ijhydene.2006.11.022Search in Google Scholar

[2] A.R.Yavari, A.LeMoulee, F.R.de Castro, S.Deledda, 0.Friedrichs, W.J.Botta, G.Vaughan, T.Klassen, A.Fernandez, A.Kvick: Scripta Mater.52 (2005) 719. DOI:10.1016/j.scriptamat.2004.12.02010.1016/j.scriptamat.2004.12.020Search in Google Scholar

[3] J.F.R.de Castro, A.R.Yavari, A.LeMoulee, T.T.Ishikawa, W.J.Botta: J. Alloys Compd.389 (2005) 270. DOI:10.1016/j.jallcom.2004.07.04210.1016/j.jallcom.2004.07.042Search in Google Scholar

[4] S.Deledda, A.Borissova, C.Poinsignon, W.J.Botta, M.Dornheim, T.Klassen: J. Alloy Compd.404 (2005) 409. DOI:10.1016/j.jalleom.2005.01.115Search in Google Scholar

[5] A.Vaichere, D.R.Leiva, T.T.Ishikawa, W.J.Botta: Mat. Sei. Forum39 (2008) 570.Search in Google Scholar

[6] P.de Rango, A.Chaise, J.Charbonnier, D.Fruchart, M.Jehan, P.Marty, S.Miraglia, S.Rivoirard, N.Skryabina: J. Alloys Compd.52(2007) 446447.Search in Google Scholar

[7] V.Skripnyuk, E.Rabkin, Y.Estrin, R.Lapovok: Acta Mater.52 (2004) 405. DOI:10.1016/j.actamat.2003.09.02510.1016/j.actamat.2003.09.025Search in Google Scholar

[8] V.Skripnyuk, E.Buchman, E.Rabkin, Y.Estrin, M.Popov, S.Jorgensen: J. Alloys Compd.99 (2007) 436.Search in Google Scholar

[9] S.L0ken, J.K.Solberg, J.P.Maehlen, R.V.Denys, M.V.Lototsky, B.P.Tarasov, V.A.Yartys: J. Alloys Compd.114 (2007) 446447.Search in Google Scholar

[10] A.Wieczorek, M.Krystian, M.J.Zehetbauer: Diffusion and defect data. Solid state data. Part B, Solid state phenomena114 (2006) 177.Search in Google Scholar

[11] M.Kawasaki, T.G.Langdon: J. Mater. Sei.42 (2007) 1782. DOI: 10.1007/s 10853-006-0954-2Search in Google Scholar

[12] H.Watanabe, T.Mukai, K.Ishikawa, K.Higashi: Scripta. Mater.46 (2002) 851. DOI:10.1016/S1359-6462(02)00064-710.1016/S1359-6462(02)00064-7Search in Google Scholar

[13] R.Lapovok, R.Cottam, P.F.Thomson, Y.Estrin: J. Mater. Res.20 (2005) 1375. DOI:10.1557/JMR.2005.018010.1557/JMR.2005.0180Search in Google Scholar

[14] R.Lapovok, P.F.Thomson, R.Cottam, Y.Estrin: Mater. Sei. Eng. A390 (2005) 410411.Search in Google Scholar

[15] R.B.Figueiredo, T.G.Langdon: Mater. Sei. Eng. A430 (2006) 151. DOI: 10.1016/j.msea.2006.05.05610.1016/j.msea.2006.05.056Search in Google Scholar

[16] R.B.Figueiredo, T.G.Langdon: Adv. Eng. Mat.10 (2008) 37. DOI:10.1002/adem.20070031510.1002/adem.200700315Search in Google Scholar

[17] J.Dufour, J.Huot: J. Alloys Compd. L5 (2007) 439.Search in Google Scholar

[18] E.Leon, J.Knystautas, J.Huot, R.Schulz: Thin Solid Films, 496 (2006) 683687. DOI:10.1016/j.tsf.2005.08.22710.1016/j.tsf.2005.08.227Search in Google Scholar

[19] J.Dufour, J.Huot: J. Alloys Compd.147 (2007) 446447.Search in Google Scholar

[20] Y.Iwahashi, J.Wang, Z.Horita, M.Nemoto, T.G.Langdon: Seripta. Mater.36 (1996) 143. DOI: 10.1016/1359-6462(96)00107-810.1016/1359-6462(96)00107-8Search in Google Scholar

[21] M.Furukawa, Y.Iwahashi, Z.Horita, M.Nemoto, T.G.Langdon: Mater. Sei. Eng. A257 (1998) 328. DOI:10.1016/S0921-5093(98)00750-310.1016/S0921-5093(98)00750-3Search in Google Scholar

[22] H.K.Lin, J.C.Huang, T.G.Langdon: Mat. Sei. Eng. A402 (2005) 250. DOI:10.1016/j.msea.2005.04.01810.1016/j.msea.2005.04.018Search in Google Scholar

[23] L.Lu, M.O.Lai: Mechanical Alloying. EUA: Kluwer Academic Publishers (1998) 296.10.1007/978-1-4615-5509-4Search in Google Scholar

[24] C.W.Su, L.Lu, M.O.Lai: Mat. Sei. Eng. A434 (2006) 227. DOI:10.1016/j.msea.2006.06.10310.1016/j.msea.2006.06.103Search in Google Scholar

[25] W.N.Tang, R.S.Chen, J.Zhou, E.H.Han: Mat. Sei. Eng A499 (2009) 404. DOI:10.1016/j.msea.2008.09.04810.1016/j.msea.2008.09.048Search in Google Scholar

[26] F.Kang, J.T.Wang, Y.Peng: Mat. Sei. Eng. A487 (2008) 68. DOI:10.1016/j.msea.2007.09.06310.1016/j.msea.2007.09.063Search in Google Scholar

[27] A.Leon, E.J.Knystautas, J.Huot, R.Schulz: Thin Solid Films496 (2006) 683. DOI:10.1016/j.tsf.2005.08.22710.1016/j.tsf.2005.08.227Search in Google Scholar

Received: 2009-4-6
Accepted: 2009-10-9
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110225/pdf
Scroll to top button