Phase equilibria and thermal analysis in the Fe–Mn–Ni system
-
Lijun Zhang
Abstract
Based on the critical review of the experimental data available in the literature, 7 decisive ternary alloys were prepared. New phase transition temperatures and phase equilibria at 800°C in the Fe – Mn – Ni system were measured. An effective method to accurately determine phase transition temperatures from differential thermal analysis curves with overlapped peaks and nonlevel baselines within a narrow temperature range was developed. A massive transformation was observed in one quenched Fe-rich alloy. In order to make the fcc_A1 phase always in the fully disordered state in the ternary system, the effect of the binary reciprocal parameter on the Gibbs energy of ternary ordered L12 phase was considered. It was found that the introduction of only one parameter could describe all reliable experimental data in the Fe – Mn – Ni system satisfactorily. The presently obtained parameters were successfully applied in two practical cases.
References
[1] V.A.Chernenko, E.Cesari, V.V.Kokorin, I.N.Vitenko: Scr. Metall. Mater.33 (1995) 1239.Search in Google Scholar
[2] G.H.Wu, C.H.Yu, L.Q.Meng, J.L.Chen, F.M.Yang, S.R.Qi, W.S.Zhan, Z.Wang, Y.F.Zheng, L.C.Zhao: Appl. Phys. Lett.75 (1999) 2990.Search in Google Scholar
[3] S.J.Murray, M.Marioni, S.M.Allen, R.C.O'Handley, T.A.Lograsso: Appl. Phys. Lett.77 (2000) 886.Search in Google Scholar
[4] V.V.Khovailo, R.Kainuma, T.Abe, K.Oikawa, T.Takagi: Scr. Mater.51 (2004) 13.Search in Google Scholar
[5] A.A.Cherechukina, I.E.Dikshteina, D.I.Ermakova, A.V.Glebova, V.V.Koledova, D.A.Kosolapova, V.G.Shavrov, A.A.Tulaikovaa, E.P.Krasnoperovb, T.Takagic: Phys. Lett. A291 (2001) 175.Search in Google Scholar
[6] H.B.Wang, F.Chen, Z.Y.Gao, W.Cai, L.C.Zhao: Mater. Sci. Eng. A438 (2006) 990.Search in Google Scholar
[7] C.Picornell, J.Pons, E.Cesari, J.Dutkiewicz: Intermetallics16 (2008) 751.Search in Google Scholar
[8] Y.Q.Wu, F.X.Yin, K.Hono: Scr. Mater.46 (2002) 717.Search in Google Scholar
[9] L.J.Zhang, Y.Du, H.H.Xu, C.Y.Tang, H.L.Chen, W.Q.Zhang: J. Alloys. Compd.454 (2008) 129.Search in Google Scholar
[10] L.J.Zhang, Y.Du: CALPHAD31 (2007) 529.Search in Google Scholar
[11] Y.Du, J.C.Schuster, Z.-K.Liu, R.X.Hu, P.Nash, W.H.Sun, W.W.Zhang, J.Wang, L.J.Zhang, C.Y.Tang, Z.J.Zhu, S.H.Liu, Y.F.Ouyang, W.Q.Zhang, N.Krendelsberger: Intermetallics16 (2008) 554.Search in Google Scholar
[12] L.J.Zhang, Y.Du, Q.Chen, H.H.Xu, F.Zheng, C.Y.Tang, H.L.Chen: Int. J. Mat. Res.99 (2008) 1306.Search in Google Scholar
[13] N.Parravano: Inter. Z. Metallogr.4 (1913) 171.Search in Google Scholar
[14] V.G.Rivlin, G.V.Raynor: Int. Met. Rev.28 (1983) 23.Search in Google Scholar
[15] G.V.Raynor, V.G.Rivlin: Phase Equilibria in Iron Ternary Alloys, Vol. 4, The Institute of Metals, London (1988) 361.Search in Google Scholar
[16] V.Raghavan: J. Phase. Equilib.15 (1994) 617.10.1007/BF02647624Search in Google Scholar
[17] D.M.Kundrat: Metall. Tans. A17 (1986) 1825.10.1007/BF02817279Search in Google Scholar
[18] V.M.Danilenko, V.Z.Trukevich: Izv. Akad. Nauk SSSR, Met.2 (1987) 209.Search in Google Scholar
[19] V.Z.Turkevich: Sverkhtverd. Mater. v Nar. Kh-ve, Kiev. (1989) 29.Search in Google Scholar
[20] K.C.Harikumar, V.Raghavan: J. Alloy Phase Diagrams4 (1989) 53.Search in Google Scholar
[21] K.C.Harikumar, V.Raghavan: J. Alloy Phase Diagrams5 (1989) 201.Search in Google Scholar
[22] J.Miettinen: CALPHAD22 (1998) 275.10.1016/S0364-5916(98)00028-5Search in Google Scholar
[23] P.Franke: Int. J. Mater. Res.98 (2007) 954.10.3139/146.101558Search in Google Scholar
[24] S.H.Liu, Y.Du, L.J.Zhang: CALPHAD (2008) to be submitted.Search in Google Scholar
[25] Y.A.Kocherzhinskii, O.G.Kulik, V.Z.Trukevich: Izv. Akad. Nauk SSSR, Met.4 (1985) 210.Search in Google Scholar
[26] E.Schuermann, M.Djurdjevic, L.Nedeljkovic: Steel. Res.68 (1997) 512.Search in Google Scholar
[27] V.I.Goman'kovV.I.Kleinerman, B.N.Tret'yakov, A.I.Zaitsev: Fizika. Metallov i Metallovedenie61 (1986) 1136.Search in Google Scholar
[28] V.I.Goman'kovA.I.Zaitsev, V.I.Kleinerman: Izv. Akad. Nauk SSSR, Met.2 (1986) 204.Search in Google Scholar
[29] T.B.Massalski: Binary Alloy Phases Diagrams, 2nd ed., ASM International, Metals Park, OH (1986) 1086.Search in Google Scholar
[30] T.B.Massalski: Binary Alloy Phases Diagrams, 2nd ed., ASM International, Metals Park, OH (1986) 1573.Search in Google Scholar
[31] L.Ding, P.F.Ladwig, X.Y.Yan, Y.A.Chang: Appl. Phys. Lett.80 (2002) 1186.Search in Google Scholar
[32] N.N.Kurnakov, M.Y.Tronev: Izvest. Sektora Fiz. Khim. Analiza Inst. Obshchei i Neorg. Khim. Akad. Nauk S.S.S.R.24 (1954) 132.Search in Google Scholar
[33] S.Kaya, M.Nakayama, H.Sato: Proc. Phys. Math. Soc. Japan25 (1943) 179.Search in Google Scholar
[34] I.L.Eganyan, Y.P.Selisskii: Fizika Metallov i Metallovedenie23 (1967) 369.Search in Google Scholar
[35] B.Ganguli, V.Meherotra, K.P.Gupta: Trans. Indian Inst. Met.44 (1991) 187.Search in Google Scholar
[36] J.H.Smith, H.W.Paxton, C.L.McCabe: J. Phys. Chem.68 (1964) 1345.Search in Google Scholar
[37] K.Mukai, A.Uchida, T.Tagami, Y.Wasai, in: Proceedings of the third international iron and steel congress, ASM, Metals Park, OH (1978) 266.Search in Google Scholar
[38] W.M.Huang: CALPHAD13 (1989) 243.10.1016/0364-5916(89)90004-7Search in Google Scholar
[39] C.Servant, B.Sundman, O.Lyon: CALPHAD25 (2001) 79.Search in Google Scholar
[40] I.Ansara, N.Dupin, H.L.Lukas, B.Sundman: J. Alloys. Compd.247 (1997) 20.Search in Google Scholar
[41] N.Dupin, I.Ansara, B.Sundman: CALPHAD25 (2001) 279.Search in Google Scholar
[42] O.Redlich, A.T.Kister: Ind. Eng. Chem.40 (1948) 341.Search in Google Scholar
[43] A.T.Dinsdale: CALPHAD15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar
[44] G.Inden, in: The proceedings of CALPHAD V project meeting, Max-Planck Institute for Metal Research, Dusseldorf (1976) 1.Search in Google Scholar
[45] M.Hillert, M.Jarl: CALPHAD2 (1978) 227.Search in Google Scholar
[46] M.Hillert, L.I.Staffansson: Acta Chem. Scand.24 (1970) 3618.Search in Google Scholar
[47] B.Sundman, J.Ågren: J. Phys. Chem. Solids42 (1981) 297.Search in Google Scholar
[48] B.Sundamn, S.G.Fries, W.A.Oates: CALPHAD22 (1998) 335.Search in Google Scholar
[49] L.Vegard: Z. Phys.5 (1921) 17.10.1007/BF01349680Search in Google Scholar
[50] L.Vegard: Z. Kristallogr.67 (1928) 482.10.1126/science.67.1741.482.bSearch in Google Scholar
[51] T.B.Massalski: Binary Alloy Phases Diagrams, 2nd ed., ASM International, Metals Park, OH (1986) 1078.Search in Google Scholar
[52] J.O.Andersson, T.Helander, L.Höglund, P.F.Shi, B.Sundman: CALPHAD26 (2002) 273.Search in Google Scholar
[53] Y.Du, R.Schmid-Fetzer, H.Ohtani: Z. Metallkd.88 (1997) 545.Search in Google Scholar
[54] A.Costa e Silva, J.Ågren, M.T.Clavaguera–Mora, D.Djurovic, T.Gomez–Acebo, B.J.Lee, Z.-K.Liu, P.Miodownik, H.J.Seifert: CALPHAD31 (2007) 53.Search in Google Scholar
[55] T.P.Battle, R.D.Pehlke: Metall. Trans. B20 (1989) 149.Search in Google Scholar
[56] T.Takahashi, M.Kudo, K.Ichikawa: Solidification of iron and steel: A data book on the solidification phenomena of iron and steel, Solidification Committee, Joint Society Iron Steel Basic Research of ISIJ, Tokyo (1977).Search in Google Scholar
[57] O.Kubaschewski: Iron-binary phase diagrams, Springer-Verlag, New York (1982).Search in Google Scholar
[58] J.F.Elliott, in: C.R.Taylor, C.C.Custer (Eds.), Electric furnace steelmaking, Iron and steel society, Warrendale, PA (1985) 294.Search in Google Scholar
[59] M.D.Perkas, V.I.Snitsar: Phys. Met. Metallorg.17 (1964) 400.Search in Google Scholar
[60] J.A.Goldman, J.Manenc: Trans. ASM58 (1965) 645.Search in Google Scholar
[61] D.R.Squires, E.A.Wilson: Metall. Trans.3 (1972) 575.Search in Google Scholar
[62] N.H.Heo: Acta Mater.44 (1996) 3015.10.1016/1359-6454(95)00355-XSearch in Google Scholar
[63] S.H.Mun, M.Watanabe, X.Y.Li, K.H.Oh, D.B.Williams, H.C.Lee: Metall. Mater. Trans. A33 (2002) 1057.Search in Google Scholar
[64] H.C.Lee, S.H.Mun, D.McKenzie: Metall. Mater. Trans. A34 (2003) 2421.Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Feature
- Materials constitution and computational thermodynamics in the context of 100 years of IJMR – Zeitschrift für Metallkunde
- Upgrading CALPHAD to microstructure simulation: the phase-field method
- Prediction, determination and validation of phase diagrams via the global study of energy landscapes
- Alloy development using modern tools
- Phase equilibria and thermal analysis in the Fe–Mn–Ni system
- Integrated approach to thermodynamics, phase relations, liquid densities and solidification microstructures in the Al–Bi–Cu system
- Formation of clathrates Ba–M–Ge(M = Mn, Fe, Co)
- New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
- Basic
- Thermodynamic assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si systems
- Thermodynamic re-assessment of the Ti–Al–Nb system
- Effect of varying oxygen partial pressure on the properties of reactively evaporated zinc aluminate thin films
- Applied
- Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method
- Microstructure and room temperature compressive properties of holmium doped DS NiAl-Cr(Mo)-Hf eutectic alloy
- Evaporation mechanism of aluminum during electron beam cold hearth melting of Ti64 alloy
- 560°C isothermal section of the Zn–Fe–Ni–Si quaternary system at the zinc-rich corner
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Feature
- Materials constitution and computational thermodynamics in the context of 100 years of IJMR – Zeitschrift für Metallkunde
- Upgrading CALPHAD to microstructure simulation: the phase-field method
- Prediction, determination and validation of phase diagrams via the global study of energy landscapes
- Alloy development using modern tools
- Phase equilibria and thermal analysis in the Fe–Mn–Ni system
- Integrated approach to thermodynamics, phase relations, liquid densities and solidification microstructures in the Al–Bi–Cu system
- Formation of clathrates Ba–M–Ge(M = Mn, Fe, Co)
- New paradigm of a metastable phase diagram presenting structural transformations induced by annealing of Si–C–N amorphous ceramics derived from polymer precursors
- Basic
- Thermodynamic assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si systems
- Thermodynamic re-assessment of the Ti–Al–Nb system
- Effect of varying oxygen partial pressure on the properties of reactively evaporated zinc aluminate thin films
- Applied
- Matrix induced synthesis of Y3Al5O12: Ce phosphor through the Pechini method
- Microstructure and room temperature compressive properties of holmium doped DS NiAl-Cr(Mo)-Hf eutectic alloy
- Evaporation mechanism of aluminum during electron beam cold hearth melting of Ti64 alloy
- 560°C isothermal section of the Zn–Fe–Ni–Si quaternary system at the zinc-rich corner
- DGM News
- Personal