Effect of stress on the creep deformation of ASME Grade P92/T92 steels
-
Kazuhiro Kimura
Abstract
The stress versus strain curve of ASME Grade P92/T92 steels was analysed and the stress dependence of the creep deformation behavior was investigated. Good correspondence between 50% of 0.2% offset yield stress and a proportional limit was observed over a range of temperatures from 550 to 700°C. Stress dependence of the minimum creep rate was divided into two groups of high and low stress regimes with a boundary condition of 0% offset yield stress. Creep deformation in the low stress regime was considered to be controlled by dislocation climb. Large stress dependence of the minimum creep rate in the high stress regime was equivalent to the strain rate dependence of flow stress observed in the tensile test. Creep strength in the high stress regime is assumed to be influenced by plastic deformation, and should be excluded for a long-term creep strength evaluation.
References
[1] V.Foldyna, Z.Kubon, M.Filip, K.H.Mayer, C.Berger: Steel Res.67 (1996) 375.Suche in Google Scholar
[2] A.Strang, V.Foldyna, A.Jakobova, Z.Kubon, V.Vodarek, J.Lenert, in: A.Strang, W.M.Banks, R.D.Conroy, M.J.Goulette (Eds.), Advances in Turbine Materials, Design and Manufacturing, The Institute of Materials, London (1997) 603.Suche in Google Scholar
[3] K.Kimura, H.Kushima, F.Abe: Key Engineering Materials171–174 (2000) 483.10.4028/www.scientific.net/KEM.171-174.483Suche in Google Scholar
[4] J.Bursik, N.Merk, in: C.C.Branco (Ed.), Mechanical Behaviour of Materials at High Temperature, Kluwer Academic Publisher, Netherlands (1995) 299.10.1007/978-94-009-1714-9_16Suche in Google Scholar
[5] A.Strang, V.Vodarek: Mat. Sci. Tech.12 (1996) 552.10.1179/026708396790165993Suche in Google Scholar
[6] A.Zielinska-Lipiec, A.Czyrska-Filemonowicz, P.J.Ennis, O.Wachter, in: J.Purmensky (Ed.), Creep Resistant Metallic Materials, VITKOVICE, Ostrava (1996) 254.Suche in Google Scholar
[7] A.Strang, V.Vodarek, in: A.Strang, J.Cawley, G.W.Greenwood (Eds.), Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications, The Institute of Materials, London (1998) 117.Suche in Google Scholar
[8] P.Hofer, H.Cerjak, P.Warbichcler: Mater. Sci. Technol.16 (2000) 1221.Suche in Google Scholar
[9] K.Kimura, H.Kushima, F.Abe, K.Suzuki, S.Kumai, A.Satoh, in: A.Strang, W.M.Banks, R.D.Conroy, G.M.McColvin, J.C.Neal, S.Simpson (Eds.), Advanced Materials for 21st Century Turbines and Power Plant, The Institute of Materials, London (2000) 590.Suche in Google Scholar
[10] J.Hald, L.Korcakova: ISIJ Int.43 (2003) 420.10.2355/isijinternational.43.420Suche in Google Scholar
[11] H.K.Danielsen, J.Hald: Energy Mat.1 (2006) 49.10.1179/174892306X99732Suche in Google Scholar
[12] K.Sawada, H.Kushima, K.Kimura, M.Tabuchi: ISIJ Int.47 (2007) 733.10.2355/isijinternational.47.733Suche in Google Scholar
[13] K.Kimura, H.Kushima, F.Abe, in: R.Viswanathan (Ed.), Advances in Life Assessment and Optimization of Fossil Power Plants, EPRI, California (2002).Suche in Google Scholar
[14] A.Strang, V.Foldyna, J.Lenert, V.Vodarek, K.H.Mayer, in: A.Strang, R.D.Conroy, W.M.Banks, M.Blackler, J.Leggett, G.M.McColvin, S.Simpson, M.Smith, F.Starr, R.W.Vanstone (Eds.), Engineering Issues in Turbine Machinery, Power Plant and Renewables, MANEY, London (2003) 427.Suche in Google Scholar
[15] K.Kimura, H.Kushima, K.Sawada, in: A.Strang, R.D.Conroy, W.M.Banks, M.Blackler, J.Leggett, G.M.McColvin, S.Simpson, M.Smith, F.Starr, R.W.Vanstone (Eds.), Engineering Issues in Turbine Machinery, Power Plant and Renewables, MANEY, London (2003) 443.Suche in Google Scholar
[16] K.Kimura, K.Sawada, K.Kubo, H.Kushima, in: Y.Y.Wang (Ed.), Experience with Creep-strength Enhanced Ferritic Steels and New and Emerging Computational Methods, PVP-Vol. 476, ASME, New York (2004) 11.10.1115/PVP2004-2566Suche in Google Scholar
[17] G.Dimmler, P.Weinert, H.Cerjak, in: I.A.Shibli, S.R.Holdsworth, G.Merckling (Eds.), Creep & Fracture in High Temperature Components – Design & Life Assessment Issues, DEStech Publications, Inc., Pennsylvania (2005) 165.Suche in Google Scholar
[18] K.Maruyama, J.S.Lee, in: I.A.Shibli, S.R.Holdsworth, G.Merckling (Eds.), Creep & Fracture in High Temperature Components – Design & Life Assessment Issues, DEStech Publications, Inc., Pennsylvania (2005) 372.Suche in Google Scholar
[19] B.Wilshire, H.Burt, in: A.K. Bhaduri (Ed.), Pressure Vessels and Piping, OPE 2006 – Chennai, Chennai (2006) P-3.Suche in Google Scholar
[20] B.Wilshire, P.J.Scharning: Scripta Mater.56 (2007) 701.10.1016/j.scriptamat.2006.12.033Suche in Google Scholar
[21] B.Wilshire, P.J.Scharning, in: C.E.Jaske, T.H.Hyde, A.Nitta (Eds.), Creep and Fatigue at Elevated Temperatures, CREEP 8, ASME, New York (2007) CREEP2007-26754.Suche in Google Scholar
[22] K.Kimura, in: 2005 ASME Pressure Vessels and Piping Division Conf., ASME, New York (2005) PVP2005-71039.Suche in Google Scholar
[23] K.Kimura, in: 2006 ASME Pressure Vessels and Piping Division Conf., ASME, New York (2006) PVP2006-ICPVT-11-93294.Suche in Google Scholar
[24] Thermal Power Standard Code, Ministry of Economy, Trade and Industry (METI), Japanese Government, Tokyo, Dec. 14 (2005).Suche in Google Scholar
[25] Thermal Power Standard Code, Ministry of Economy, Trade and Industry (METI), Japanese Government, Tokyo, July 10 (2007).Suche in Google Scholar
[26] ECCC DATA SHEETS 2005, European Creep Collaborative Committee, Sep. 5 (2005).Suche in Google Scholar
[27] ASME Code Case 2179-6, Aug. 4 (2006).Suche in Google Scholar
[28] ASME Code Case 2180-4, Aug. 4 (2006).Suche in Google Scholar
[29] K.Kimura, H.Kushima, K.Sawada, Y.Toda, in: C.E.Jaske, T.H.Hyde, A.Nitta (Eds.), Creep and Fatigue at Elevated Temperatures, CREEP8, ASME, New York (2007) CREEP2007-26406.Suche in Google Scholar
[30] K.Kimura, K.Sawada, H.Kushima, Y.Toda, in: V.Viswanathan, D.Gandy, K.Coleman (Eds.), Advances in Materials Technology for Fossil Power Plants, EPRI, California (2007).Suche in Google Scholar
© 2008, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Horst Cerjak – Emeritus Professor
- Review
- Calculation of crystallographic texture due to displacive transformations
- Basic
- Ferrite transformation from oxide–steel interface in HAZ-simulated C–Mn steel
- Influence of metastable tetragonal ZrO2-reinforcements on the properties of MoSi2-composites
- Joining strategies for open-porous metallic foams
- Precipitation behaviour of an Fe–Co–Mo-alloy during non-isothermal ageing
- Characterization of δ-phase in superalloy Allvac 718PlusTM
- Direct observation of phase transformations in the simulated heat-affected zone of a 9Cr martensitic steel
- Effect of boron on creep deformation behavior and microstructure evolution in 9% Cr steel at 650°C
- Effect of stress on the creep deformation of ASME Grade P92/T92 steels
- Applied
- Assessment of creep rupture life of weldments of martensitic steels
- Computational analysis of the precipitation kinetics in a complex tool steel
- Predicted precipitate back-stress and creep rupture strength of the advanced 9–12% Cr steel COST E2
- Compositional characterisation and thermodynamic modelling of nitride precipitates in a 12% Cr steel
- The L2 norm of the deviation between the measured and computed transient displacement field in a test weld
- Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Horst Cerjak – Emeritus Professor
- Review
- Calculation of crystallographic texture due to displacive transformations
- Basic
- Ferrite transformation from oxide–steel interface in HAZ-simulated C–Mn steel
- Influence of metastable tetragonal ZrO2-reinforcements on the properties of MoSi2-composites
- Joining strategies for open-porous metallic foams
- Precipitation behaviour of an Fe–Co–Mo-alloy during non-isothermal ageing
- Characterization of δ-phase in superalloy Allvac 718PlusTM
- Direct observation of phase transformations in the simulated heat-affected zone of a 9Cr martensitic steel
- Effect of boron on creep deformation behavior and microstructure evolution in 9% Cr steel at 650°C
- Effect of stress on the creep deformation of ASME Grade P92/T92 steels
- Applied
- Assessment of creep rupture life of weldments of martensitic steels
- Computational analysis of the precipitation kinetics in a complex tool steel
- Predicted precipitate back-stress and creep rupture strength of the advanced 9–12% Cr steel COST E2
- Compositional characterisation and thermodynamic modelling of nitride precipitates in a 12% Cr steel
- The L2 norm of the deviation between the measured and computed transient displacement field in a test weld
- Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy
- Notifications
- DGM News