Home Technology Influence of metastable tetragonal ZrO2-reinforcements on the properties of MoSi2-composites
Article
Licensed
Unlicensed Requires Authentication

Influence of metastable tetragonal ZrO2-reinforcements on the properties of MoSi2-composites

  • Johannes T. Bauer , Alfred Scholz , Christina Berger , Ludwig Weiler and Matthias Achtermann
Published/Copyright: June 11, 2013

Abstract

In this work, MoSi2 – ZrO2-composites with different volume fractions (15-, 25-, 35 vol.% ZrO2) were examined. Zirconium oxide was successfully tetragonal stabilised (metastable state) through a high temperature isostatic pressure process, where the tetragonal – monoclinic phase transformation is inhibited by the pressure of the MoSi2-matrix. Stabilisers, e. g. Y2O3 were not used. Increasing ZrO2 content enhances strength and fracture toughness at room temperature. For temperatures above 900°C up to 1500°C no influence of the volume fraction of ZrO2 was observed with respect to the compression tests. Wear of pre-oxidised samples (20 min at 1000°C) is higher for the 25 and 35 vol.% than non-oxidised material. Oxidation resistance is observed to be poor and decreases with increasing ZrO2 content in the composite. Early crack initiation leads to poor creep behaviour and thermo-shock behaviour. This is probably due to the oxygen diffusing through the ZrO2-particles. Consequently no continuous protective SiO2-layer can be built as known from pure MoSi2-materials. In general the investigated material is not suitable for high temperature applications because of the poor oxidation behaviour.


* Correspondence address, Johannes T. Bauer, Darmstadt University of Technology, Institute of Materials Technology, Grafenstr. 2, D-64283 Darmstadt, Germany, Tel.: +49 6151 16 7313, Fax: +49 6151 16 5659, E-mail:

References

[1] J.H.Schneibel, C.T.Liu, L.Heatherly, M.J.Kramer: Scripta Mater.38 (1998) 1169.10.1016/S1359-6462(97)00558-7Search in Google Scholar

[2] P.Jehanno, M.Heilmaier, H.Saage, M.Boening, H.Kestler, J.Freudenberger, S.Drawin: Mater. Sci. Eng. A463 (2007) 216.10.1016/j.msea.2006.08.125Search in Google Scholar

[3] P.Jehanno, M.Heilmaier, H.Saage, H.Heyse, M.Boening. H.Kestler, J.H.Schneibel: Scripta Mater.55 (2006) 525.10.1016/j.scriptamat.2006.05.033Search in Google Scholar

[4] N.Claussen: Advances in Ceramics12 (1984) 325.Search in Google Scholar

[5] J.Kübler: Fracture toughness of ceramics using SEVNB-method; Round Robin, Appendix A1.7, VAMAS Report No. 37, ESIS Document D2-99, EMPA, Duebendorf (Switzerland) (1999).Search in Google Scholar

[6] B.Eigenmann, E.Macherauch: Mat.-wiss.u. Werkstofftech.26 (1995) 148.10.1002/mawe.19950260310Search in Google Scholar

[7] B.Eigenmann, E.Macherauch: Mat.-wiss.u. Werkstofftech.26 (1995) 199.10.1002/mawe.19950260410Search in Google Scholar

[8] B.Eigenmann, E.Macherauch: Mat.-wiss.u. Werkstofftech.27 (1996) 426.10.1002/mawe.19960270907Search in Google Scholar

[9] B.Eigenmann, E.Macherauch: Mat.-wiss.u. Werkstofftech.27 (1996) 491.10.1002/mawe.19960271010Search in Google Scholar

[10] H.Behnken, V.Hauk: Z. Metallkd.77 (1986) 620.Search in Google Scholar

[11] R.A.Every, A.K.McCurdy: Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie, Gruppe III: Kristall- und Festkörperphysik, Band 29, Teilband a: Elastische Konstanten zweiter und höherer Ordnung, Springer-Verlag, Berlin (1992)Search in Google Scholar

[12] Y.Q.Liu, G.Shao, P.Tsakiropoulos: Intermetallics9 (2001) 125.10.1016/S0966-9795(00)00114-XSearch in Google Scholar

[13] Y.-L.Jeng, E.J.Lavernia: J. Mater. Sci.29 (1994) 2557.10.1007/BF00356804Search in Google Scholar

[14] C.G.McKamey, P.F.Tortorelli, J.H.DeVan, C.A.Carmichael: J. Mater. Res.7 (1992) No. 102747.10.1557/JMR.1992.2747Search in Google Scholar

Received: 2007-10-26
Accepted: 2008-1-27
Published Online: 2013-06-11
Published in Print: 2008-04-01

© 2008, Carl Hanser Verlag, München

Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.101646/html
Scroll to top button