Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
-
Frank Bergner
, Michael Schaper , Ralf Hammer , Manfred Jurisch , Andre Kleinwechter and Thomas Chudoba
Abstract
Fabrication, handling and processing of wafers of intrinsically brittle and anisotropic single-crystalline GaAs require a high level of control of the material's response to different loading conditions. The present work is focused on the response to hardness indentation. A short overview on the behaviour of (100) GaAs wafers in several doping conditions over a wide range of indentation loads from nano-indentation up to macro-indentation including sharp and blunt indenters is given. Special attention is paid to the pop-in effect in depth-sensing nano-indentation, to the anisotropy of indentation-induced radial crack formation and to the material's crack resistance obtained from the indentation fracture mechanics approach. We have observed that, under certain conditions, the frequency of formation of radial cracks is essentially different for the two in-plane <110> directions. This observation is attributed to the occurrence of two different kinds of dislocations and to the lack of inversion symmetry. The effect turns out to be closely related to a left – right asymmetry in the material removal caused by wire sawing. This insight has paved the way to the optimisation of the process of wire sawing of GaAs single crystals.
References
[1] R.Hammer: PhD Thesis, University Erlangen-Nürnberg (2002).Search in Google Scholar
[2] B.Lawn: Fracture of Brittle Solids, Cambridge University Press (1995).Search in Google Scholar
[3] J.Woirgard, C.Tromas, J.C.Girard, V.Audurier: J. Eur. Ceram. Soc.18 (1998) 2297.10.1016/S0955-2219(98)00083-1Search in Google Scholar
[4] E.LeBourhis, G.Patriarche: Phil. Mag. Lett.79 (1999) 805.10.1080/095008399176625Search in Google Scholar
[5] J.E.Bradby, J.S.Williams, J.Wong-Leung, M.V.Swain, P.Munroe: Appl. Phys. Lett.78 (2001) 3235.10.1063/1.1372207Search in Google Scholar
[6] H.S.Leipner, D.Lorenz, A.Zeckzer, H.Lei, P.Grau: Physica B308 (2001) 446.10.1016/S0921-4526(01)00718-9Search in Google Scholar
[7] W.W.Gerberich, J.C.Nelson, Lilleodden, P.Anderson, J.T.Wyborek: Acta Mater.44 (1996) 3585.10.1016/1359-6454(96)00010-9Search in Google Scholar
[8] D.Lorenz, A.Zeckzer, U.Hilpert, P.Grau, A.Johansen, H.S.Leipner: Phys. Rev. B67 (2003) 172101.10.1103/PhysRevB.67.172101Search in Google Scholar
[9] C.A.Schuh, J.K.Mason, A.C.Lund: Nature Mater.4 (2005) 612.10.1038/nmat1429Search in Google Scholar
[10] K.Yasutake, Y.Konishi, K.Adachi, Yoshii, M.Umeno, H.Kawabe: Jap. J. Appl. Phys.27 (1988) 2238.10.1143/JJAP.27.2238Search in Google Scholar
[11] R.Hammer, F.Bergner, T.Flade, M.Jurisch, A.Kleinwechter, M.Schaper: Z. Metallkd.96 (2005) 785.Search in Google Scholar
[12] F.Ericson, S.Johansson, J.A.Schweitz: Mater. Sci. Eng. A105 (1988) 131.10.1016/0025-5416(88)90489-2Search in Google Scholar
[13] G.Michot, A.George, A.Chabli-Brenac, E.Molva: Scripta Metall.22 (1988) 1043.10.1016/S0036-9748(88)80100-5Search in Google Scholar
[14] M.D.Drory: MRS Symp. Proc.468 (1997) 201.10.1557/PROC-468-201Search in Google Scholar
[15] F.Bergner, U.Bergmann, M.Schaper, R.Hammer, M.Jurisch: Materialprüfung43 (2001) 117.Search in Google Scholar
[16] M.Schaper, M.Jurisch, F.Bergner, R.Hammer: MRS Symp. Proc.744 (2003) M1.8, 29.10.1557/PROC-744-M1.8Search in Google Scholar
[17] E.Le Bourhis, G.Patriarche: Prog. Crys. Growth Charac. Mater.47 (2003) 1.10.1016/j.pcrysgrow.2004.09.001Search in Google Scholar
[18] P.B.Hirsch: Mat. Res. Soc. Proc.2 (1981) 257.10.1557/PROC-2-257Search in Google Scholar
[19] M.Jurisch, D.Behr, R.Bindemann, T.Bunger, T.Flade, W.Fliegel, R.Hammer, S.Holzig, A.Kiesel, A.Kleinwechter, A.Kohler, U.Kretzer, A.Seidl, B.Weinert: Inst. Phys. Conf. Ser. 166 (2000) 13.Search in Google Scholar
[20] F.Börner, S.Eichler, A.Polity, R.Krause-Rehberg, R.Hammer, M.Jurisch: J. Appl. Phys.84 (1998) 2255.Search in Google Scholar
[21] D.Schneider, R.Hammer, M.Jurisch: Semicond. Sci. Technol.14 (1999) 305.10.1088/0268-1242/14/3/017Search in Google Scholar
[22] T.Chudoba, N.Schwarzer, F.Richter: Surf. Coat. Technol.154 (2002) 140.10.1016/S0257-8972(02)00016-6Search in Google Scholar
[23] B.Wolf: Cryst. Res. Technol.35 (2000) 377.10.1002/1521-4079(200004)35:4<377::AID-CRAT377>3.0.CO;2-QSearch in Google Scholar
[24] E.Reimann: Materialprüfung42 (2000) 411.Search in Google Scholar
[25] A.I.Beltzer: Acoustics of Solids, Springer, Berlin (1988).10.1007/978-3-642-83370-0Search in Google Scholar
[26] G.R.Anstis, P.Chantikul, B.R.Lawn, D.B.Marshall: J. Am. Ceram. Soc.64 (1981) 533.10.1111/j.1151-2916.1981.tb10320.xSearch in Google Scholar
[27] T.Miyoshi, N.Sagawa, T.Sassa: Trans. Jap. Soc. Mech. Eng. A51 (1985) 2489.10.1299/kikaia.51.2489Search in Google Scholar
[28] A.Briggs: Acoustic Microscopy, Clarendon, Oxford (1992).Search in Google Scholar
[29] R.Hill: Proc. Phys. Soc. Lond. A65 (1952) 349.10.1088/0370-1298/65/5/307Search in Google Scholar
[30] R.Mouginot, D.Maugis: J. Mater. Sci.20 (1984) 4354.10.1007/BF00559324Search in Google Scholar
[31] H.S.Leipner, D.Lorenz, A.Zeckzer, P.Grau: phys. stat. sol. (a)183 (2001) R4.10.1002/1521-396X(200102)183:2<R4::AID-PSSA99994>3.0.CO;2-#Search in Google Scholar
[32] P.D.Warren, P.Pirouz, S.G.Roberts: Phil. Mag. A50 (1984) L23.10.1080/13642818408238853Search in Google Scholar
[33] F.Bergner, B.Köhler: Mater. Sci. Forum210 (1996) 831.10.4028/www.scientific.net/MSF.210-213.831Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News