First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
-
L. Cha
, C. Scheu , G. Richter , T. Wagner , S. Sturm and M. Rühle
Abstract
In this paper we describe the structure and formation of a new intermetallic phase in the Cu – Al system, which has not been reported before. The phase was found in Cu/Al bilayer films, which were deposited at room temperature on (0001) sapphire substrates using molecular beam epitaxy. The interfacial intermetallic phase is 8 nm thick, and possesses a hexagonal close-packed structure. The lattice parameters of the phase gradually increase from the near-Cu-side to the near-Al-side. In parallel with the described lattice expansion, the chemical composition of the interlayer also varies from 27 to 58 Al at.% from the near-Cu-side to the near-Al-side. The formation and microstructural characteristics of this new phase are explained by Hume-Rothery laws and Shockley partial dislocations. In addition, in-situ heating experiments were performed in a transmission electron microscope at ∼600 °C to investigate the thermodynamic stability of this new Cu – Al intermetallic phase. During annealing the intermetallic layer disappears and other known equilibrium intermetallic phases develop. This indicates that this new hexagonal close-packed Cu – Al intermetallic phase is metastable.
References
[1] M.Schulz: Nature399 (1999) 729.10.1038/21526Search in Google Scholar
[2] E.D.Perfeco, A.P.Giri, R.R.Shields, H.P.Longworth, J.R.Pennacchia, M.P.Jeanneret: IBM J. RES. & Devel.42 (1998).10.1147/rd.425.0597Search in Google Scholar
[3] M.P.Shearer, S.K.Sen, C.L.Bauer: Phys. Stat. Sol. (a)69 (1982) 193.10.1002/pssa.2210690112Search in Google Scholar
[4] M.P.Shearer, C.L.Bauer, A.G.Jordan: Thin Solid Films61 (1979) 273.10.1016/0040-6090(79)90471-1Search in Google Scholar
[5] R.A.Hamm, J.M.Vandenberg: J. Appl. Phys.56 (1984) 293.10.1063/1.333960Search in Google Scholar
[6] J.Geng, P.Oelhafen: Surf. Sci.452 (2000) 161.10.1016/S0039-6028(00)00312-5Search in Google Scholar
[7] S.U.Campisano, E.Costanzo, F.Scaccianoce: Thin Solid Films52 (1978) 97.10.1016/0040-6090(78)90260-2Search in Google Scholar
[8] B.M.Clemens, G.L.Eesley: Phy. Rev. Lett.61 (1988) 2356.10.1103/PhysRevLett.61.2356Search in Google Scholar
[9] K.L.Merkle, M.I.Buckett, Y.Gao: Acta Metal. Mater.40 (1992) S249.10.1016/0956-7151(92)90283-KSearch in Google Scholar
[10] Y.Funamizu, K.Watanabe: Trans. Jpn. Inst. Met.12 (1971) 1382.Search in Google Scholar
[11] H.G.Jiang, J.Y.Dai, H.Y.Tong, B.Z.Ding, Q.H.Song, Z.Q.Hu: J. Appl. Phys.74 (1993) 6165.10.1063/1.355183Search in Google Scholar
[12] J.A.Rayne, M.P.Shearer, C.L.Bauer: Thin Solid Films65 (1980) 381.10.1016/0040-6090(80)90248-5Search in Google Scholar
[13] F.J.A.Den Broeder, M.Klerk, J.M.Vandenberg, R.A.Hamm: J. Acta metall.31 (1983) 285.10.1016/0001-6160(83)90105-0Search in Google Scholar
[14] A.N.Fadnis, M.L.Trudeau, A.Joly, David V.Baxter: Phys. Rev. B48 (1993) 12202.10.1103/PhysRevB.48.12202Search in Google Scholar
[15] A.Markwitz, W.Matz, K.Short, M.Waldschmidt: Surf. Interface Anal.33 (2002) 1.10.1002/sia.1151Search in Google Scholar
[16] H.T.G.Hentzell, R.D.Thompson, K.N.Tu: J. Appl. Phys.54 (1983) 6923.10.1063/1.331999Search in Google Scholar
[17] H.Y.Chen, S.M.Heald: Phys. Rev. B.42 (1990) 4913.10.1103/PhysRevB.42.4913Search in Google Scholar
[18] H.Y.Chen, S.M.Heald: J. Appl. Phys.66 (1989) 1793.10.1063/1.344350Search in Google Scholar
[19] V.Simic, Z.Marinkovic: J. Less-Commom Metals72 (1980) 133.10.1016/0022-5088(80)90258-1Search in Google Scholar
[20] A.Strecker, U.Salzberger, J.Meyer: Prakt. Metallogr.30 (1993) 482.Search in Google Scholar
[21] A.Barna: Mat. Res. Symp. Proc.254 (1992) 3.10.1557/PROC-254-3Search in Google Scholar
[22] F.Phillipp, R.Höschen, M.Osaki, G.Möbus, M.Rühle: Ultramicroscopy56 (1994) 1.10.1016/0304-3991(94)90141-4Search in Google Scholar
[23] P.A.Stadelmann: Ultramicrocsopy21 (1987) 131.10.1016/0304-3991(87)90080-5Search in Google Scholar
[24] G.Möbus: PhD Thesis, Universität Stuttgart (1994).Search in Google Scholar
[25] G.Möbus, R.Schweinfest, T.Gemming, T.Wagner, M.Rühle: J. of Microscopy190 (1997) 109.Search in Google Scholar
[26] K.Du, Y.Rau, N.Y.Jin-Phillipp, F.Phillipp: J. Mater. Sci. Technol.18 (2002) 135.Search in Google Scholar
[27] D.B.Williams, C.B.Carter: Transmission Electron Microscopy, Plenum, New York (1996).10.1007/978-1-4757-2519-3Search in Google Scholar
[28] L.Cha: PhD Thesis, Universität Stuttgart (2006).Search in Google Scholar
[29] M.El-Boragy, R.Szepan, K.Schubert: J. Less-Commom Metals29 (1972) 133.10.1016/0022-5088(72)90183-XSearch in Google Scholar
[30] R.W.Cahn, P.Haasen: Physical Metallurgy, Elsevier, Third edition (1983).Search in Google Scholar
[31] W.Hume-Rothery: Elements of Structural Metallurgy (The institute of Metals, London, Monograph and Report Series. No. 26), (1961).Search in Google Scholar
[32] H.Jones: J. Phys. Radium23 (1962) 637.10.1051/jphysrad:019620023010063700Search in Google Scholar
[33] P.J.Goodhew, F.J.Humphreys: Electron Microscopy and Analysis, Taylor and Francis, Second edition (1988).Search in Google Scholar
[34] U.Dahmen: Scripta Metallurgica21 (1987) 1029.10.1016/0036-9748(87)90244-4Search in Google Scholar
[35] J.M.Howe, G.J.Mahon: Ultramicroscopy30 (1989) 132.10.1016/0304-3991(89)90180-0Search in Google Scholar
[36] Z.J.Zhang, B.X.Liu: J. Phys. Condens. Matter7 (1995) L293.10.1088/0953-8984/7/23/003Search in Google Scholar
[37] Y.G.Chen, B.X.Liu: Acta Mater.47 (1999) 1389.10.1016/S1359-6454(98)00430-3Search in Google Scholar
[38] Q.Zhang, W.S.Lai, B.X.Liu: Phys. Rev. B61 (2000) 9245.10.1103/PhysRevB.61.R9245Search in Google Scholar
[39] J.H.Li, H.B.Guo, L.T.Kong, B.X.Liu: Phys. Rev. B71 (2005) 14107.10.1103/PhysRevB.71.014107Search in Google Scholar
[40] J.H.Li, L.T.KongB.X.Liu: J. Materials Research19 (2004) 3547.10.1557/JMR.2004.0453Search in Google Scholar
[41] X.Y.Li, Z.F.Li, B.X.Liu: J. Alloys and Compounds334 (2002) 167.10.1016/S0925-8388(01)01770-4Search in Google Scholar
[42] Z.C.Li, D.P.Yu, B.X.Liu: Phys. Rev. B65 (2002) 245403.10.1103/PhysRevB.65.245403Search in Google Scholar
[43] B.Zhao, D.M.Li, F.Zeng, F.Pan: Appl. Surface Science207 (2003) 334.10.1016/S0169-4332(02)01526-XSearch in Google Scholar
[44] F.Zeng, M.Ding, B.Zhao, F.Pan: Materials Letters53 (2002) 40.10.1016/S0167-577X(01)00450-5Search in Google Scholar
[45] F.Zeng, B.Zhao, F.Pan: Nuclear Instruments and Methods in Physics Research B183 (2001) 311.10.1016/S0168-583X(01)00747-9Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- In-situ measurement of local strain partitioning in a commercial dual-phase steel
- Threshold strength and residual stress analysis of zirconia–alumina laminates
- Threshold strength prediction for laminar ceramics from bifurcated crack path simulation
- First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films
- Electric-field induced phase transition in a near-surface layer of a PbMg0.33Nb0.67O3-28% PbTiO3 (001) single-crystalline plate
- Modelling the onset of oxide formation on metal surfaces from first principles
- Applied
- Delamination of stiff islands patterned on stretchable substrates
- Crack formation in surface layers with strain gradients
- Theta-like specimens for measuring mechanical properties at the small-scale: effects of non-ideal loading
- Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime
- Self-assembly of high-performance multi-tube carbon nanotube field-effect transistors by ac dielectrophoresis
- Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
- Review
- Recent advances in piezospectroscopy
- Notifications
- DGM News