Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
-
Anja Dehler
Abstract
Mechanical properties of a T6-AlSi6Cu4 cylinder-head alloy are investigated at 4 stress levels up to 545 K through tensile and compressive test to assess creep damage. The effect of over-ageing for 200 h at comparable temperatures was studied through RT hardness tests. Creep behaviour was characterised by a minimum creep rate and an extended steady state was not observed. No threshold stresses were apparent from minimum creep rate vs. stress plots at any of the temperatures studied here. Apparent stress exponents were both temperature and stress dependent and the apparent creep activation energy was 2–3 times the lattice selfdiffusion activation energy for aluminium. The Norton plot was best described by an exponential relation. The total strain to failure exhibited a maximum for a particular applied stress and decreases for both higher and lower applied stress. Creep life is well described by the Monkman– Grant relation at the highest temperature, but exhibits deviations from the idealised behaviour at the lower test temperatures.
Refrences
[1] J.Hirsch: Mater. Forum28 (2004) 15.10.1016/S1051-0443(04)70154-2Search in Google Scholar
[2] A.Wilm: Metallurgie8 (1911) 225.Search in Google Scholar
[3] K.Matsuda, Y.Uetani, T.Sato, S.Ikeno: Metall. Mater. Trans.A32 (2001) 1293.10.1007/s11661-001-0219-2Search in Google Scholar
[4] M.Murayama, K.Hono, W.F.Miao, D.E.Laughlin: Metall. Mater. Trans.A32 (2001) 239.10.1007/s11661-001-0254-zSearch in Google Scholar
[5] M.Zeren: J. Mater. Processing Tech.169 (2005) 292.10.1016/j.jmatprotec.2005.03.009Search in Google Scholar
[6] Y.J.Li, S.Brusethaug, A.Olsen: TMS Letters2 (2005) 45.Search in Google Scholar
[7] Y.J.Li, S.Brusethaug, A.Olsen: Scripta Mater.54 (2006) 99.10.1016/j.scriptamat.2005.08.044Search in Google Scholar
[8] G.Wang, Q.Sun, L.Feng, L.Hui, C.Jing: Mater. Design (2006) in press.Search in Google Scholar
[9] A.Deschamps, D.Solas, Y.Brechet, in: Y. Brechet (Ed.), Microstructure, Mechanical Properties and Processes, Proceedings of Euromat 99, Vol. 3, Wiley-VCH, Weinheim (2000) 121.Search in Google Scholar
[10] H.R.Shercliff, M.F.Ashby: Acta Metall. Mater.38 (1990) 1789.10.1016/0956-7151(90)90291-NSearch in Google Scholar
[11] C.A.Cloutier, P.M.Reeber–Schmanski, J.W.Jones, J.E.Ellison, in: S.K.Das (Ed), Automotive Alloys 1999, TMS, Warrendale (2000) 153.Search in Google Scholar
[12] S.Esmaeili, D.J.Lloyd, W.J.Poole: Acta Mater.51 (2003) 2243.10.1016/S1359-6454(03)00028-4Search in Google Scholar
[13] S.C.Weakley–Bollin, W.Donlon, C.Wolverton, J.W.Jones, J. E.Allison: Metall. Mater. Trans.A35 (2004) 2407.10.1007/s11661-006-0221-9Search in Google Scholar
[14] P.Ouellet, F.H.Samuel: J. Mater. Sci.34 (1999) 4671.10.1023/A:1004645928886Search in Google Scholar
[15] M.Spoth: Diplomarbeit, Fachhochschule Esslingen (2004).Search in Google Scholar
[16] J.Cadek: Creep in Metallic Materials, Elsevier, Amsterdam (1988).Search in Google Scholar
[17] M.E.Kassner, M.T.Pérez–Prado: Fundamentals of Creep in Metals and Alloys, Elsevier, Amsterdam (2004).Search in Google Scholar
[18] B.Reppich, in: R.W.Cahn, P.Haasen, E.J.Kramer (Eds.), Material Science and Technology, Vol. 6, VCH, Weinheim (1993) 311.Search in Google Scholar
[19] J.Rösler, E.Arzt: Acta Metall.36 (1988) 1053.10.1016/0001-6160(88)90159-9Search in Google Scholar
[20] E.Arzt, G.Dehm, P.Gumbsch, O.Kraft, D.Weiss: Prog. Mater. Sci46 (2001) 283.10.1016/S0079-6425(00)00015-3Search in Google Scholar
[21] D.A.Dehler: Diplomarbeit, Otto-von-Guericke Universität, Magdeburg (2006).Search in Google Scholar
[22] S.Spigarelli: Mater. Sci. Eng. A337 (2002) 306.10.1016/S0921-5093(02)00045-XSearch in Google Scholar
[23] T.Nakajima, M.Takeda, T.Endo: Mater. Sci. Eng.A387–389 (2004) 670.Search in Google Scholar
[24] H.J.Frost, M.F.Ashby: Deformation mechanism maps, Pergamon Press, Oxford (1982).Search in Google Scholar
[25] R.Lagneborg, B.Bergman: Met. Sci.10 (1976) 20.10.1179/030634576790431462Search in Google Scholar
[26] J.Čadek, K.Kucharova, S.J.Zhu: Mater. Sci. Eng. A281 (2000) 162.Search in Google Scholar
[27] F.C.Monkman, N.J.Grant: Proc. ASTM56 (1956) 593.Search in Google Scholar
[28] M.Heilmaier, B.Reppich: Metall. Mater. Trans.A27 (1996) 3861.10.1007/BF02595635Search in Google Scholar
[29] F.Dobes, K.Milicka, Met. Sci.10 (1976) 382.10.1080/03063453.1976.11683560Search in Google Scholar
[30] R.Wagner, R.Kampmann, in: R.W.Cahn, P.Haasen, E.J.Kramer (Eds.), Material Science and Technology, Vol. 5, VCH, Weinheim (1991) 213.Search in Google Scholar
[31] G.Liu, G.J.Zhang, X.D.Ding, J.Sun, K.H.Chen: Mater. Sci. Eng. A344 (2003) 113.10.1016/S0921-5093(02)00398-2Search in Google Scholar
[32] A.W.Zhu, E.A.Starke, Jr.: Acta Mater.47 (1999) 3263.10.1016/S1359-6454(99)00179-2Search in Google Scholar
[33] S.Hu: Ph.D. Thesis, Pennsylvania State University, 2004.Search in Google Scholar
[34] P.E.J.Rivera Diaz del Castillo, P.Reischig, S.van der Zwaag: Scripta Mater.52 (2005) 705.10.1016/j.scriptamat.2004.12.025Search in Google Scholar
[35] D.Janoff, M.E.Fine: Mater. Sci. Eng.64 (1984) 67.10.1016/0025-5416(84)90074-0Search in Google Scholar
[36] W.Blum, B.Reppich, in: B.Wilshire, R.W.Evans (Eds.), Progress in Creep and Fracture, Vol. 3, Pineridge Press, Swansea (1985) 83.Search in Google Scholar
[37] C.K.L.Davies, A.G.Older, R.N.Stevens, in: B. Wilshire, & rum;R.W. Evans (Eds.), Proceedings. 4th International Conference on Creep and Fracture of Engineering Materials and Structures, The Institute of Metals, London (1990) 97.Search in Google Scholar
[38] B.Reppich, H.Bügler, in: B. Wilshire, D.R.J. Owen (Eds.), Proc. 2nd Int. Conf. on Creep and Fracture of Engg. Mater. And Structures, Pineridge Press, Swansea (1984) 299.Search in Google Scholar
[39] R.N.Lumley, A.J.Morton, I.J.Polmear: Acta Metall50 (2002) 3597.Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Basic
- Microcracks in superalloys: From local in-situ measurements to lifetime prediction
- Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
- Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
- The nature of the TRIP-effect in metastable austenitic steels
- Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
- Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
- On the Hall–Petch relation between flow stress and grain size
- Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
- Applied
- Strengthening of silicon nitride ceramics by shot peening
- Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
- New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
- Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
- Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
- Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
- Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
- Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Basic
- Microcracks in superalloys: From local in-situ measurements to lifetime prediction
- Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
- Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
- The nature of the TRIP-effect in metastable austenitic steels
- Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
- Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
- On the Hall–Petch relation between flow stress and grain size
- Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
- Applied
- Strengthening of silicon nitride ceramics by shot peening
- Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
- New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
- Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
- Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
- Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
- Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
- Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
- DGM News
- DGM News