Startseite Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties

  • Ralf Ermel , Tilmann Beck und Eberhard Kerscher
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The mechanical properties of a unidirectional carbon/carbon (C/C) composite with a mainly highly textured matrix are investigated in tensile tests for the as-received state and after heat treatment from 1600°C to 2500°C. In order to interpret the composite behaviour single fibre tests, analyses of fracture surfaces and tests on infiltrated fibre felts were conducted. The fibre–matrix shear strength was determined by push-out indentation tests. Strength and ductility only change slightly although the strength of the fibres decreases significantly with increasing heat treatment temperature (HTT). The reason is a reduced bonding strength between fibre and matrix with increasing HTT. The Young's modulus of C/C composites increases with HTT. The best mechanical properties of the composite are reached by finding a compromise between sufficient fibre strength and weakened fibre-matrix strength at a HTT of 1600°C.


Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth

* Correspondence address, Dr. Tilmann Beck, Institut für Werkstoffkunde I, Universität Karlsruhe (TH), Kaiserstr. 12, D-76131 Karlsruhe, Germany, Tel.: +49721/6084159, Fax: +49721/6088044, E-mail:

References

[1] G.Savage: Carbon–carbon composites, Chapman & Hall, London (1992).Suche in Google Scholar

[2] D.B.Marshall, B.N.Cox: Acta Metal.35 (1987) 2607.10.1016/0001-6160(87)90260-4Suche in Google Scholar

[3] J.Aveston, A.Kelly: J. Mater. Sci.8 (1973) 352.10.1007/BF00550155Suche in Google Scholar

[4] B.Budiansky, J.W.Hutchinson, A.G.Evans: J. Mech. Phys. Solids34 (1986) 167.10.1016/0022-5096(86)90035-9Suche in Google Scholar

[5] A.G.Evans, D.B.Marshall: Acta Metal.37 (1989) 2567.10.1016/0001-6160(89)90291-5Suche in Google Scholar

[6] J.K.Wells, P.W.R.Beaumont: J. Mater. Sci.20 (1985) 1275.10.1007/BF01026323Suche in Google Scholar

[7] E.Fitzer, K.-H.Geigl, W.Hüttner: Carbon18 (1980) 265.10.1016/0008-6223(80)90049-4Suche in Google Scholar

[8] Z.J.Hu, W.G.Zhang, K.J.Hüttinger, B.Reznik, D.Gerthsen: Carbon41 (2003) 749.10.1016/S0008-6223(02)00403-7Suche in Google Scholar

[9] A.Oberlin: Carbon22 (1984) 521.10.1016/0008-6223(84)90086-1Suche in Google Scholar

[10] M.S.Dresselhaus, G.Dresselhaus, K.Sugihara, I.L.Spain, H. A.Goldberg: Graphite fibers and filaments, Springer-Verlag, Berlin (1988).10.1007/978-3-642-83379-3Suche in Google Scholar

[11] W.G.Zhang, Z.J.Hu, K.J.Hüttinger: Carbon40 (2002) 2529.10.1016/S0008-6223(02)00206-3Suche in Google Scholar

[12] W.G.Zhang, K.J.Hüttinger: Carbon41 (2003) 2325.10.1016/S0008-6223(03)00284-7Suche in Google Scholar

[13] B.Reznik, K.J.Hüttinger: Carbon40 (2002) 621.10.1016/S0008-6223(01)00282-2Suche in Google Scholar

[14] T.Chen, B.Reznik, D.Gerthsen, W.G.Zhang, K.J.Hüttinger: Carbon43 (2005) 3088.10.1016/j.carbon.2005.06.035Suche in Google Scholar

[15] ASTM D 3379-75: Standard test method for tensile strength and Young's modulus for high-modulus single-filament materials (1989).Suche in Google Scholar

[16] B.Reznik, M.Guellali, D.Gerthsen, R.Oberacker, M.J.Hoffmann: Materials Letters52 (2002) 14.10.1016/S0167-577X(01)00357-3Suche in Google Scholar

[17] D.B.Marshall: J. Am. Ceram. Soc.67 (1984) C259.10.1111/j.1151-2916.1984.tb09626.xSuche in Google Scholar

[18] C.Marotzke: Comp. Sci. Tech.50 (1994) 393.10.1016/0266-3538(94)90027-2Suche in Google Scholar

[19] A.Pfrang, R.Ermel, T.Beck, E.Kerscher, M.Müller, C.Ziebert, S.Ulrich, T.Schimmel: Proceedings of Carbon 2006 in Aberdeen, Scotland, UK, July 16–21 (2006).Suche in Google Scholar

[20] W.Weibull: J. Appl. Mech.18 (1951) 293.10.1115/1.4010337Suche in Google Scholar

[21] A.Oberlin, M.Guigon, in: A.R.Bunsell (Ed.), Fibre reinforcements for composite materials, Elsevier (1988).Suche in Google Scholar

[22] W.N.Reynolds, R.Moreton: Phil. Trans. R. Soc. LondonA294 (1980) 451.Suche in Google Scholar

[23] H.Hatta, T.Aoi, I.Kawahara, Y.Kogo: J. Comp. Mat.38 (2004) 1685.10.1177/0021998304044764Suche in Google Scholar

[24] W.Watt: Proc. R. Soc. London A319 (1970) 5.10.1098/rspa.1970.0161Suche in Google Scholar

[25] D.B.Marshall, B.N.Cox, A.G.Evans: J. Am. Ceram. Soc.68 (1985) 225.10.1111/j.1151-2916.1985.tb15313.xSuche in Google Scholar

[26] Y.Furukawa, H.Hatta, Y.Kugo: Acta Metal.37 (2003) 1819.Suche in Google Scholar

[27] J.Brandstetter, H.Peterlik, K.Kromp, R.Weiss: Comp. Sci. Tech.63 (2003) 653.10.1016/S0266-3538(02)00250-6Suche in Google Scholar

[28] R.Ermel, T.Beck, O.Vöhringer: Mat. Sci. Eng.A387 (2004) 845.Suche in Google Scholar

[29] D.Ekenhorst, B.Muelle, A.Lange, M.P.Hentschel: Proceedings of ICCE/4 in Big Island of Hawaii, July 6–12 (1997).Suche in Google Scholar

Received: 2006-4-21
Accepted: 2006-8-2
Published Online: 2013-05-31
Published in Print: 2006-10-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Herrn Prof. em. Dr. rer. nat. Dr.-Ing. E. h. mult. Prof. h. c. Dr. h. c. Eckard Macherauch zum 80. Geburtstag
  5. Basic
  6. Stability of residual stresses in longitudinally and transversely deep rolled sintered iron under quasistatic and cyclic loading
  7. Residual stresses in random-planar aluminium/Saffil® short-fibre composites deformed in different loading modes
  8. Thermal residual stress analysis in continuous Al2O3 fiber reinforced NiAl composites
  9. On the fatigue behavior of ultrafine-grained interstitial-free steel
  10. Laser Interference Metallurgy – using interference as a tool for micro/nano structuring
  11. On dynamic and static strain ageing in Cu-2at.% Mn polycrystals
  12. High thermal stability of mechanically-alloyed nanocrystalline Cu–Nb alloys
  13. Possibilities and limits in thermohydrogen processing of beta titanium alloy Timetal®10-2-3
  14. Applied
  15. Cube textured tapes for use in YBa2Cu3O7–δ-coated conductor applications
  16. Cavitation erosion of advanced ceramics in water
  17. Influence of tension–compression loading history on plastic deformation of Mg wrought alloy AZ31
  18. Microstructure and mechanical properties of the extruded Mg-alloys AZ31, AZ61, AZ80
  19. Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue
  20. Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties
  21. Cooperating twin robots form a new X-ray diffractometer for stress analysis
  22. Grinding-induced microstructural gradients and residual stresses in the surface layers of carbon steel and pure tungsten
  23. Residual-stress-induced subsurface crack nucleation in titanium alloys
  24. Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment
  25. History
  26. Damage tolerance: fracture mechanics in design
  27. Description of flow curves over wide ranges of strain rate and temperature
  28. Mechanismen und Modellierung der Verformung und Schädigung keramischer Faserverbundwerkstoffe
  29. Notifications
  30. Personal
Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101384/html
Button zum nach oben scrollen